
-.

,l \.

Nfl[GROS@FT

GOts@LEE@

usetros mnanuafl

Olticrosof t, 1978

Foreword

'i'he current release of COBOL-80 (Version 1.0) runs under the
C'P,/'M operating system as descr:ibed in Section 4 of the
itjcrosoft Utility Software Manrral. Future rele.rses of
C()BOL-80 will run under ISIS-II and other operabinq systems,
as dictateC by user demand.

SECTION 1

1.1

1.2
1.3

SECTION 2

2.1
2.2
2.3

aaao

aa

aaao

aa

aa

Microsoft
COBOL-8O Userrs lvlanual

CONTENTS

Compiling COBOL Programs

COBOL-S0CommandScanner . o..
1.1.1 Format of Commands .
1.1.2 COBOL-80 Compilation Switches
Output Listings and Error Messages .
Files Used by COBOL-8O . . o

1

1

9
9

11

Runtime Execution .

Printer File Handling
Disk File Handling . .
RuntimeErrors....

COBOL-8O Userrs ManuaI

SECTION 1

Compiling COBOL Programs

Page 7

COBOL-8O Command Scanner

To teIl the COBOL compiler what to compile and with
which options, it is necessary to input a "commandstringr" which is read by the COBOL-8O command
scanner. Those f amiliar with l,licrosof t I s
FORTRAN-8O and MACRO-80 will find the command
format is identical for COBOL-8O. However,
different switches (options) ard, used with
coBol-80.

Format of Commands

COBOL-8O is invoked by typing COBOL followed by a
space, followed by an appropriate command string,
as described below. COBOL-8O is read from the disk
and then examines the command string. If it is ok,
compilation commences. If not, COBOL-80 responds
with "?COMMAND ERROR" followed by an asterisk so
the user can try again. When finished, COBOL-80
always exits to the operating system.

The general format of a COBOL-80 compiler command
is:

obj prog-dev: filename. ext, Iist-dev: filenane. ext=
source-dev : f ilename. ext

where the various terms mean:

objprog-dev: The devi.ce on which the object
program is to be written

list-dev: The device on which the program
listing is to be written

source-dev: The device from which the source
program input to COBOL-8O is taken

1.1.1

1.1

Whenever a
defaults to

NOTE

device name is omitted,
the currently selected disk.

ir

COBOL-80 Userrs Manual Page B

filename. ext
The filename and filename extension
of the object Program file must be
supplied if the device is a directory
device. Filename extensions may be
omitted, in which case default values
are supplied. See Section 4 of the
Microsoft Utility Software lt4anual
for the defaults suPPlied bY CP/M
and other oPerating sYStems.

Either the object file or the listing file
specification or both may be omitted. If neither a

Iist.ing file nor an object file is desired, place
only a conrma to the left of the equal sign'. The
purpose then is only to syntax check , for errors
*fricfr are displayed on the console. If nothing is
typed to the left of the equal sign, .the object
rire is written on the same device with the same
name as the source file, but with the default
extension. If only a listing file specification is
given, the user may still write out the object file
nV typing "/R" after the source name. This too
*iites the object file on the same disk with the
same name as the source but with the default
extension for ob ject f iles. Similarly 't /Lt' may be
used to place the listing file on the same disk
with the same name as the source with the default
extension for listing fiIes.

Examples (using CP/M

=PAYROLL

default extensions):

, TTY : =PAYROLL

Compile the source from
PAYROLL.COB placing the
object into PAYROLL.REL.

Compile the source from
PAYROLL.COB Placing the
listing output on the
terminal. No object is
generated.

Compile PAYROLL.COB Put-
ting the object into
PAYOBJ. REL.

Compile PAYROLL.COB Put-
ting the object into
PAYROLL.REL and listing
into PAYROLL.LST.

Compile PAYROLL but
produce no object or
Iisting file. Useful
for error checking.

PAYOBJ=PAYROLL. COB

PAYROLL, PAYROLL=PAYROLL

,=PAYROLL

COBOL-8O Userrs Ivlanual

1.1.2 COBOL-80 Compilatj.on Switches

A variety of switches may be given in
string that will affect compilation.
must be preceded by a slash (/).

Switch Action

Faulty quoted literal
1. Zero length
2. Improper continua-

tion
3. Premature end-of-

file (before ending
delimiter)

Page 9

the command
Each switch

Force generation of an object
file as described above.

Force generation ,cf a listing
file as described above.

,,

Each /P allocates an extra 100
bytes of stack space for use
during compilation. Use /P if
stack overflow errors occur
during compilation. Otherwise
not needed.

1.2 Output Listings and Error l"lessages

The listing file output by COBOL-8O is a
line-by-line account of the source file with error
messages, some interspersed throughout the listing,
some generated only at the end. Each source line
listed is preceded by a consecutive 4-digit decimal
nurnber. This is used by the error meesages at the
end to refer back to lines in error, and also by
the Runtime system to indicate what statement has
caused a Runtime Error after it occurs.

Two classes of'diagnostic error messages may be
produced during compilation.

Low Level flags are displayed directly below source
lines on the listing when simple syntax violations
occur. Remedial action is assumed in each case, EIS

documented below, and compilation continues.

FIag

''QLIT,'?

Reason for FIaq Continuation Action

L

P

Ignore and continue.

Assume acceptable.

Assume program end.

COBOL-80 User's Manual Page 1 0

LENGTH? Quoted literal length
over 120 characters,
or numeric literal over Excessive characters
18 digitsr ot rwordf are ignored.
(identifierr or name)
over 30 characters.

CHRCTR? Illegal character Ignore and continue.

PUNCT? Improper punctuation
(e.g. comma not fol- Assumes acceptable.
lowed by a space).

BADWORD Current word is malformed
such as ending in hyphen, Ignore and continue.
or multiple decimal points
in a numeric 1iteral.

SEQ # tmproper sequence number
(includes case of out-of- Accept and continue.
order seguence number) .

High level diagnostic messages consist of trvo or
three parts:

1. The associated source line number four
digits, followed by a colon (:).

2. An English explanation of the error detected by
the compiler. If this text begins with /'\t/,
then it is only a warning; if not, it is an
error sufficiently severe to inhibj-t assembly,
linkage, and execution of an object program.

3. (Optional) The program element cited at the
point of error is listed.

Desi-gn of the hil'h level diagnostic message texl- is
such that no list of tmessaqes and error cocies' is

NAMtr? Name does not begin with Accept and continue.
a Ietter (a - Z) .

PIC = X An improper Picture. PIC X is assumed

COL.7? An improper character Assumes a blank
appears in source line in column 7.
character tcolumnt 7,
rvhereonly*-/Dare
permissible.

AREA A? Area A, columns B-12, is Ignore contents cf
not blank in a Area A (assumes
continuation line. blank).

1.3

COBOL-80 Userr s Ivlanual Page 1 1

necessary. The messages are designed to be
self-explanatory, based upon the assumption that a
COBOL-80 Reference lr{anual is available.

Files Used !I COBOL-8O

In addition to the Source, Listing and Object files
used by COBOL-80, two other files should be noted.

First, there is a file called STEXT.INT which the
compiler always places on the primary disk. It is
used to hold intermediate symbotic text between
pass one and pass two of the cgmpiler. It is
created, written, then closed, rehd, and then
deleted before the compiler exits. Consequently,
the user should never run into it unless the
compilation is aborted.

Another file of concern to the user is the file to
be copied due to a COPY verb in the COBOL program.
The user simply gives the name of the source file
to be read in and compiled in place of the COpystatement. Remember that copied files cannot have
COPY statements within them and the rest of theline after a COPY statement is ignored.

CL\BOL-80 User I s ManuaI Page 12

SECTION 2

Runtime Execution

2.1 Printer File Handling

Printer files should be viewed simply as a stream
of characters going to the printer. Records should
be defined simply as the fields to appear on the
printer. 'No extra characters are needed in the
record for carriage control characters. Carriage
return, line feed and form feed are sent to the
printer as needed between lines. I'lote ho'ivever,
that blank characters (spaces) on the end of a
print line are truncated to make printing faster.

No "VALUE OF" clause should be given for a PRINTER
file in the FD, but "LABEL RECORD rS Ol4rrTED" must
be specified. The BLOCK clause must not be used
for printer files.

2.2 Disk File Han{l:lng

Disk files must have "LABEL RECORD IS STANDARD"
declared and have a "VALUE OF" clause that i-ncludes
a File Specification. Block clauses are checked
for syntax but have no effect on any, type file at
this time.

The format of sequential files is always that of
variable length strings delimited by a carriage
return,/1ine feed. Records are packed together as
much as possible to make maximum use of floppy
disks.

The format of relative files is always that of
fixed length records of the size of the largest
record defined for the file. No delimiter is
needed, and therefore none is provided. Deleted
records are fi1led with hex value rFFr -

The format of indexed files is too complicated to
include in this document. It is a complex mixture
of keys, data, linear pointers, deletion pointers,
and icramble-function pointers. It is doubtful
that the COBOL programmer would require access to
such information.

COBOL-8O Userrs Manual Page 1 3

2.3 Runtime Errors

Runtime terminal errors result in a four-line
synopsis, printed on the console.

** RUN-TIME ERR:
reason (see list below)
Iine number
program-1d

The possible reasons for termination, with
additional explanation, are listed below.

REDUNDANT OPEN Attempt to oPen a file that is
already open. ',

DATA UNAVAILABLE A filers base register contains
a non-zero address if, and onlY
if, the file is oPen and
available record areas exist.
Reference to data in a record of
a non-oPen filer or one that has
alreadY reached the "AT END"
condition, is invalid, and is
detected bY recognizing zeto in
the associated base register.

SUBSCRIPT FAULT A subscript has an illegal value
(usuallY, less than 1). This
applies to an index reference
such as I + 2, the value of
which must not be less than 1.

rNPUT/oUTPUT Unrecoverable I/O ertox, with no
. provision in the userr s COBOL

program for acting uPon the
situation bY waY of an AT END
clause' INVALID KEY clause,
DECLARATIVE Procedure, etc.

NON-NUMERIC DATA Whenever the contents of a nu-
merlc rtem does not conform to
the given PICTURE, this
condition may arise.
CorresPonds to the hardware
rdata exceptionr interruPt in
some comPuters. The user should
always check inPut data, if it
is subject to error (because
"input editing" has not Yet been
done) bY use of the NUI'IERIC
test.

COBOL-80 User' s l"lanual Paqe 14

PERFORM OVERLAP An illegal sequence of PERFORM's
dsr for example, when paragraPh
A is performed, and prior to
exiting from it another PERFORM
A is initiated.

CALL PARAMETERS There is a disparity between the
number of parameters in calling
program and called subprogram.

TLLEGAL READ l::'3::"'?"*H"" fi::.'n:: ti-o
mode.

ILLEGAL WRITE AttEMPt tO WRITE tO A filc'thAt
is not op"tt in the output mode
for sequential access files, or
in the output or I-O mode for
random or dynamic access files.

ILLEGAL REWRITE Attempt to REWRITE a record in a
file not open in the I/O mode.

REWRITET NO READ Attempt to REWRITE a record of a
sequential access file when the
last operation was not a
successful READ.

REDUNDANT CLOSE Attempt to close file that is
not open

GO TO. (NOT SET) Attempt to execute an unini-
tialized alterable paragraph
containing only a null GO

' statement.

FILE LOCKED Attempt to OPEN after earlier
CLOSE WITH LOCK.

READ BEYOND EOF Attempt to read (next) after
already encountering end-of-
file.

DELETET NO READ Attempt to DELETE a record of a
sequential access file when the
last operation was not a
successful READ.

ILLEGAL DELETE Relative file not opened for
r-o.

ILLEGAL START F j I e nr:t opened for input or
t _o.

,^

os-cP/M@

COBOL

Sept. 1978

Portions of this
@ 1978 by Ohio

@ 1978 by Micro
@ 1978 by Digital

Manual are
Scientific lnc.

Soft Inc.

Research lnc.

CP/M is
mark of

a registered trade
Digital Research Inc.

,l

Disclai.men uerranties ^ot^

rEiriz, :arr$ftffi;$lffiti$
n$6*[1gilFniil''ll*,ffi

.rln
"ilu

q

?]
'l

Wil[GR@S@FT

G@B@LEE@

refererDGe mamual

.^.,
-

'^

@ l,ticrosof t, 1978

Acknowledgment

rrAny organization interested in reproducing the COBOL report
and specifications in whole or in part, using ideas taken
from this report as the basis for an instruction manual or
for any other purpose is free to do so. However, aIl such
organizations are requested to reproduce this section as
part of the introduction to the document. Those using a
short passager ds in a book review, are requested to
mention, TCOBOLT in acknowledgment of the source, but need
not quote this entire section.
I'COBOL is an industry language and is not the property of
any company or group of companies, or of any organization or
group of organizations.

"No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the accuracy and
functioning of the programming system and language.
Moreoverr rro responsibility is assumed by any contributor,
or by the committee, in connection therewith.
I'Procedures have been established for the maintenance of
COBOL. Inquiries concerning the procedures for proposing
changes should be directed to the Executive Committee of the
Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted
material used herein

FLOW-MATIC (Tradenrark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 byIBM; FACT, DSI 27A5260-2750, copyrighted 1960 by
Minneapo I i s -Honeywe I I

have specifically authorized the use of this material in
whole or in part, in the COBOL specification in programming
manuals or similar publications. "

--from the ANST COBOL STANDARD
(x3. 2 3-197 4)

Microsoft
COBOL-80 Reference ltanual

CONTENTS

Introduction

PAGE

5

7CHAPTER 1:

1.1,4.2

1.3
1.4
1.5
1.5
1.7
1.8
1.9
1.10
1.11
1 .12
1.13
1 .14

CHAPTER 2z

2.1
2.2

CHAPTER 3:

3.1

3.2
3.3
3.4
3.5
3.5
3.7
3.8
3.9
3.10
3. 11
3.12
3.13

Fundamental Concepts of COBOL . . .

Character Set
Punctuation......
Word Formation o . .
F'ormatNotation
Level Numbers and Data-Names
Filg-Names . . o o

Condition-Namgs o . . .
Mnemonic-Namgs
Literals
FigurativeConstants.o.o..
Structure of a Program
Coding Rulgs . . . o
QualificationofNames. o.
COPY Statgmgnt o o

DataDivision r..

DataItems..........
3.1.1 Group Items
3.1.2 Elementary Items . . .
3.1.3 Numeric Items o
Data Description Entry . o o .
Formats for Elementary Items .
USAGE Clausg o o . .
PICTURE Clause
VALUEClausg.........
REDEFINES Clause
OCCURSClause
SYNCHRONIZED Clause
BLANK WHEN ZERO CIauSC . .
JUSTIFIED Clause
SIGNClause
File Section, FD Entries
(Sequential I-O Only)

aaaaaa

.o....25

.or..o25

.....t25

....oo26
).,a a a a -t......28

......29

. 30

. 36

......37

. . . . o . 38

. 39
40

. 40

......40,^. /\

. . . . o . 41

...7

...8

...8

. . . 9'

. . . 10

. . . 12

. . . 13

. . . 13

. . . 13

. . . 15

. . . 15

. . . 18

. . . 19

. . . 19

aa

aa

aa

aa

fdentification and Environment Divisions

Identification Division
Environment Division o . .
2.2.1 Configuration Section
2.2.2 Input-Output Section

2.2.2.1 File-Control Entry . .
2.2.2.2 I-O Control Paragraph

20

20
21
22
22
23
24

25

3.13.1 LABELClause.. ..
3.13.2 VALUEOFClause r..
3.13.3 DATA RECORDS Clause
3.13.4 BLOCKClause .. o.....
3. 13. 5 P€CORD Clause
3.13.6 CODE-SET Clause

14 Working-Storage Section o .
15 Linkage Section o

16 Level 88 Condition Names

CHAPTER Procedure Division . . . o

3.
3.
3.

41
41
42
42
43
43
44
44
44

46

46
47
48
50
52
53
53
54
55
55
56
56
57
58
59
59
60
60
62
62
63
63
66
67
68
70
70
71
71
72
73
75

77

77
77
78

79

4.1 Statements, Sentences, Procedures-Names
4.2 Organization of the Procedure Division .
4.3 MOVE Statement
4.4 INSPECT Statement
4.5 ArithmeticStatements o

4.5.1 SIZE ERROR Option
4.5.2 ROUNDEDOption . o... o...
4.5.3 GIVING Option

. 4.5.4 ADD Statement o

4.5.5 SUBTRACT Statement
4.5.6 MULTfPLY Statement
4.5.7 DIVIDEStatement
4.5.8 COMPUTE Statement o .

4.6 GOTOStatement
4.7 STOPStatement r.
4,8 ACCEPTStatement. o .,
4.9 DISPLAYStatement . o. o. o

4.10 PERFORM Statement . .
4.11 EXIT Statement :4.12 ALTER Statement
4.13 IFStatement

4.13.1 Conditions.. ... o.
4.14 OPBN Statement (Sequential I-O)
4.15 READ Statement (Sequential I-O) . .4.16 WRITE Statement (Sequential I-O)4.17 CLOSE Statement (Sequentj-al I-O) . .
4.18 REWRITE Statement (SequenLia1 I-O) . . .
4.19 General Note on I/O Error Handling . . .
4.20 ACCEPTDATE/DAY/TLME
4.21 STRINGStatement
4.22 UNSTRING Statement
4.23 Dynamic Debugging Statements . . o . . .

a

a

a

a

a

a

CHAPTER 5:

5.1
5.2
5.3

CHAPTER 6:

Inter-Program Communication o o

USING List Appendage to
CALL Statement
EXIT PROGRAM Statement

Procedure Header .
aoaaaa

aaaaaaa

Table Handling by the Indexing Method . .

6.1
6.2
6.3
6.4
5.5

CHAPTER 7 z

7.1
7.2

7.3

7.4
7.5
7.6
7.7
'l .8

CHAPTER 8:

8.1
8.2

8.3

8.4
8.5
8.6
8.7
8.8

CHAPTER 9:

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

aaaaaaa

aaaaaaa

aoao

aaaaa

aaaaaoa

Index-Names and Index Items
SET Statement . .
Relative Indexing
SEARCH Statement - Format 1

SEARCH Statement - Format 2

a

79
79
80
80
82

85

85
85
B5
86

87
88
88
89
90
90

92

92
92
93

93
93
94
94
95
95

97

IndexedFiles .. o... . o

Definition of Indexed FiIe Organization
SyntaxConsiderations
7.2.1 RECORD KEY Clause
7.2.2 File Status Reporting o . . .
Procedure Division Statements
forlndexedFiles
READStatement
IVRITEStatement .,..
REWRITEStatement
DELETE Statement
START Statement,. .

RelativeFiles...... .

Definition of Relative File Organization
SyntaxConsiderations . o .. o

8.2.1 RELATIVE KEY Clause
Procedure Division Statements
for Relative Files , .
READStatement
WRITE Statgment o
RIWRfTEStatement
DELETB Statement
START Statement . .

DECLARATMS and the USE Sentence

I:

II:

III:

IV:

V:

VI:

aa

Evaluation Rules for Compound Conditions 99

Table of Permissible MOVE Operands . . 102

Nesting of IF Statements

ASCII Character Set

Reserved Word List . . .

PERFORM with VARYING and AFTER Clauses 110

The
resPec t

Hodu I e

Nuc I eus

Sequential,
Rel at i ve and
fndexed l/0

Sequential 1/0

Relative and
I ndexed l /0

Library

lnter-Program
Communication

Table Handl ing

Debugg i ng

Summary of Features

following summary specifies the content of Microsoft coB0L withto the ANS-74 Standard.

Features Available in Microsoft C0B0L

All of level 1, plus these features of level 2:
CONDITIONS:

Level 88 conditions with value series or range
Use of logical AND/0R/NOT in conditions
Use of algebraic relational symbols for equal ityor inequal ities
lmpl ied subject, or both subject and relation,
in relational conditions
Sign test
Nested lF statements; parentheses in conditions

VERBS:
ACCEPTance of data from DATE /DAy/TtME
STRING and UNSTRING statements
COMPUTE with multiple receiving fields
PERFORM VARY I NG

IDENTIFIERS: 3
Mnemonic-names for ACCEpT or DlSpLAy devices
Procedure-names _consisting of digits only
Qual ification of Names (procedure Division only)

All of level 1 plus these features of level Z:
RESERVE clause
Multiple operands in 0pEN e cLosE, with individual
options per file

EXTEND mode for 0pEN

DYNAHIC access mode (with READ NEXT)

:IIRI_(wjth key relationats EQUAL, GREATER, or
NOT LESS)

Level I

Level I

All of level l
Ful I level 2 formats for SEARCH statement

Special extensions to ANS-74 Standard providing
conven ient trace-style debugg ing.
Conditional Compilation: lines'with
f rD in column 7r' are bypassed unlessrrWlTH DEBUGG ING HODE" is g iven i n SOURCE-
C0MPUTER paragraph.

Contact

C0B0L-80 is avai lable to individuals on a single copy, off-the-
shel f bas i s. OEM and deal er agreements are ava i I abl e upon request.
For more information, contact:

Ric Wei land
New Products Manager
M i c rosoft
300 San Mateo, llE, Suite 819
Al buquerque, NM 87t O8

505-262-1\86

Single Copy Pricing

Any purchaser of an off-the-shelf version of C0B0L-80 must sign a

non-disclosure agreement before C0B0L-80 will be shipped by Microsoft.
Updates for enhanced versions will be offered for $25 to $100 (depending
upon the extent of the enhancements) to single-copy customers. l)ack-up
copies of C0B0L may be purchased for $25. C0B0L-80 documentation is
included with every C0B0L-80 system shipped, except back-up copies.

C0BOL-80 system (including documentation)

C0B0L-80 documentation only

Sz5o. oo

$ 20.00

OEM and dealer agreements are available upon request.

0ther Products

Microsoftrs complete product I ine includes FOCAL and BASIC for the
6502 and 6800, Altair (8080) BAslc,and FoRTRAN for the 8080 and Z-80.
ln addition, Microsoft has development software that runs on the DEC-10
for all these microprocessors.

c0B0L-80

Overv i ew

Microsoft's c0B0L-80, which runs on the gogo/z-g0/go}s, brings theworldrs most widely used computer programming language to the micro-
computer user. c0B0L-80 is comparable to c0BoL tytt.rs found on mini-
computers and large mainframes. consequently, i t greatly enhances theusefulness of microcomputers because it gives-users access to theincredibly large number of programs alreidy written in C0B0L. Because
c0B0L-80 is a standard, c0B0L prog.uru written on other computers maybe run easily on BOBO, Z-80 or BO85 systems.

Microsoft's C0B0L is based on the 1974 ANSI standard and containsall Level I features and the most useful Level 2 options for the
"Nucleus'r and for sequential, Relative and lndexed fi le handl ingfaci I ities. Additional ly, Level 1 Table Handl ing, Library and lnter-program Communication faci I ities are provided. Of th. advanced Level2 features, Microsoft has included the verbs sTRlNG, ul,lsTRlNG, coMpuTE,
sEARCH, and PERFORM (varying/unti l), along with convenient conditionspecification by way of condition-names, compound conditions andabbreviated conditions. Furthermore, a data format cal led c0Mp-3allows numeric data to be packed two digits to the byte so that massstorage requirements are reduced. Lastly, a batch-style Debug tech-nique is implemented to get programs running in a minimum,of on-l inet ime.

14icrosoft's c0B0L system consists of two complete packages: a
compi ler for translating source code into relocatable object code(which, incidentally, is compatible with the object code of our FORTRAN-80 compiler and MAcRo-80 assembler),

"nJ ",.r"iime system for runningthe program by interpreting the object code at execution time.

The Compi ler

The compi ler is written in cgreful ly designed, machine-independentpseudo-code rather than 8080 machine laniuage. There is an interpreterwritten in 8o8o machine language which executes the algorithms speci-fied by the pseudo-code. gecause this pseudo-code has been implementedsuccessful ly on several minicomputers by simply rewriting tnu inter-preters, the final product is always more reliable, less costly andrequires less memory than a purely machine-coded version. This tech-nique simpl ifies maintenance because the compi ler is more compact andthe pseudo-code instructions were specificaliy chosen with the intentof writing a c0B0L compirer. Speed degredation is ress than 202because the time spent to interpret each pseudo-code instruction isinsignificant comPared to the time required for its total function.

Thc size of l{icrosof trs compiler plus interpreter is approximately
25K bytes exclusive of operating system and table space. lt consists
of five overlays, each one executed in turn, in the same memory space.
The operating system for compilation needs only the capability to read
and write sequential fi les. Because the compi ler is 'two-pass," the
source code is read while an intermediate file is written; then the
intermediate file is read and the generated object code is written. An
optional file showing source lines and errors may also be produced. 0f
course, if the c0PY function is used, provision must be made for an
alternate source fi le. Also, an optional table-spi I I mechanism re-
quires random-access file l/O so that excess table information can be
stored temporari ly on disk if needed. Lastly, a sequential input fi le
which holds the file overlays is read periodically at the end of each
majorrrphase.tr An operating system to handle all of this, such as cp/M
(along with Microsoftrs command scanner), requires about /K bytes.
Table space for a 500 line program is estimated at l2K bytes. Thus the
full system requires'25K plus 7K plus l2K or a total of 44f bytes.

Runt ime System

The object code generated by the compiler is also interpreted.
The runtime system handles al I algorithmic functions such as arithmetic,
string manipulation and editing in addition to managing sequential,
relative and indexed l/0, lt also controls program flow as specified
at the source level by conditions, GOs and PERF0RMs. In short, the
runtime system handles, at the machine level, anything that can be
written in t{icrosoft's C0BOL.

As in the compiler, the generated pseudo-code specifies the com-
plete algorithmic logic to be executed, and the runtinre interpreter
manifests the algorithms for a given machine. Again, as with the
compi ler, the overhead is insignificant when compared to the benefi t
of memory space reduction. One can simply think of the pseudo-code
as subroutine calls to accomplish given tasks with given parameters.

Documentation

Hicrosoft suppl ies a c0BOL Language Reference Manual and c0BoL
user's Guide, describing in detail how to write a program, compile it,
load it into memory and execute it. Because Hicrosoft's I inking loader
is included in the package to load the c0B0L object code into memory,
information regarding the loader is suppl ied in the userrs guide. The
loader format for C0B0L is identical to that of Microsoftrs F0RTRAN
compiler and MACRO assembler, so programs of all three languages can be
loaded and I inked together.

COBOL-80 Reference Manual Page 5

Introduction

Microsoft COBOL is based upon American National Standard
X3.23-1974. Elements of the COBOL language are allocated to
twelve different functional processing "modules."

Each module of the COBOL Standard has two non-null "levels"
level 1 represents a subset of the full set of

capabilities and features contained in level 2.

In order for a given system to be called COBOL, it must
provide at least Level 1 of the Nucleus, Table Handling ancl
Sequential I-O Modules.

The foll-owing
"rrt*".y specifies the content of Microsoft

'COBOL with respect to the Standard.

It{odule Features Available

Nucleus All of level 1, plus these features of
level 2z

CONDITIONS:
Level 88 conditions with value series or

range
Use of logical AND/OR/NOT in conditions
Use of algebraic relationa.l-symbols for

equality or inequalities
Inplied subjectr oE both subject and

relation, in relational conditions
Sign test
Nested IF statementsi parentheses in

conditions
VERBS:

ACCEPTance of data from DATE/DAY/TIME
STRING and UNSTRING statements
COMPUTE with multiple receiving fields
PERFORI.{ -- all formats from standard

level 2
IDENTIFIERS:

Itlnemonic-names for ACCEPT or DISPLAY
devices

Procedure-names consisting of digits
only

Qualification of Names (Procedure
Division only)

Sequential, All of level 1 plus these features of
Relative and leve1 2z
Indexed t/O RESERVE clause

Ivlultiple operands in OPEN and CLOSE, with
individual options per file

Sequential I/O EXTEND mode for OPEN

COBOL-8O Reference Manual Page 6

Relative and DYNAMIC access mode (witn READ NEXT)
Indexed I/O START (with key relations EQUAL, GREATER, or

NOT LESS)

Library Level 1

Inter-Program
Communication Level 1

Table Handling All of level 1, prus full lever z formats
for SEARCH statement

Debugging Special extensions to ANS-74 standard
providing convenient trace-style debugging.
Conditional compilation: lines with ',D in
column 7" are bypassed unless WITH
DEBUGGING MODE is given in
ffi paiagraph

COBOL-80 Reference Manual Page 7

CHAPTER 1

Fundamental Concepts of COBOL

1.1 Character Set

The coBol source language character set consists ofthe following characters:

Letters A through Z
Blank or space
Digits 0 through 9
Special characters:

" + plus sign
- Minus sign* Asterisk
= Equal sign
) Relational sign (greater than)(Relational sign (less than)
$ oollar sign
, Comma
; Semicolon
. Period or decimal point
" Quotation mark
(fett parenthesis
) Right parenthesisr Apostrophe (alternate of
,z slash

quotation mark)

of the previous set, the following characters areused for words:

0 through 9
A through Z

(hyphen)

The following eharacters are used for punctuation:
(Left parenthesis
) Right parenthesis
, Comma
. Period
; Semicolon

The following relation characters are used in
simpJ-e conditions:

:

fn the case of non-numeric (quoted) literals,comment entries, and cornment lines, the coBoi

COBOL-8O Reference Manual
Fundamental Concepts of COBOL

1.2

5.

character set is expanded
entire character set.

Punctuation

to include the computerrs

The following general rules of punctuation apply in
writing source programs:

Page 8

comma
must be

1.

2.

As punctuation, a period, semicolonr or
should not be preceded by a space' but
followed by a space.

3.

4.

At "Ieast one space must appear between two
successive words and/or literals. Two or more
successive spaces are treated as single space,
except in non-numeric litera1s.

Relation characters should always be preceded
by a space and followed by another space.

When the period, comma, plus t oE minus
characters are used in the PICTURE clause, they
are governed soJ-ely by rules for report items.

A comma may be used as , a separator between
successive operands of a statement, or between
two subscripts. ,

A semicolon or comma may be used to separate a
series of statements or clauses.

6.

1.3 Word Formation

User-defined and reserved words are composed of a
combinat.ion of not more Lhan 30 characters, chosen
from the following set of 37 characters:

0 through 9 (digits)
A through Z (Ietters)

(hyphen)

A word must begin with a letter; it may not end
with a hyphen. A word is ended by a space or by
proper punctuation. A word may contain more than
one embedded hypheni consecutive embedded hyphens
are also permitted. A1I words are either reserved
words, wtrict have preassigned meaniiffi
prograrnmer-supplied names. If a programmer-
supplied name is not unique, there must be a unique
method of reference to it by use of name

COBOL-8O Reference Manual
Fundamental Concepts of COBOL

Page 9

qualifiers, e.g., TAX-RATE fN STATE-TABLE.
Primarily, a non-reserved word identifj_es a data
item or field and is called a data-name. Other
cases of non-reserved words are file-names,
condition-names, mnemonic-names, and procedure-
names. (Procedure-names may begin with a digit.)

1.4 Format Notation

Throughout this publication, "general formats', areprescribed for various clauses and statements to
guide the progranmer in writing his own statements.
They are presented in a uniform system of notation,
explained in the following paragraphs.

1. Ali words printed entirely in capital 1etters
are reserved words. These are words that have
preassigned meanings. In all formats, word.s in
capital l-etters represent actual occurrences of
those words.

2. AtI underlined reserved words are required
unless the portion of the format containing
them is itself optj-onaI. These are key words.
ff any key word is missing or is incorrectly
speIled, it is considered an error in theprogram. Reserved words not underlined may beincluded or omitted at the option of theprogrammer. These words are optional words;
they are used solely for improving readability
of the program.

3. The characters () = (although not underlined)
are required when such formats are used.

4. AII punctuation and other special characters
represent actual occurrences of those
characters. punctuation is essential where itis shown. Additional punctuation can beinserted, according to the rules forpunctuation specified in Section 1.2. Ingeneral, terminal periods are shown in formatsin the manual because they are required;
semicolons and conrmas are not usually shownbecause they are optional. To be separators,
all conrmas, semicolons and periods must befollowed by a space (or blank).

5. words printed in lower-case letters in formatsrepresent generic terms (e.g., data-names) forwhich the user must insert a valid entry in the
source program.

COBOL-80 Reference Manual
Fundamental Concepts of COBOL

Page 1 0

Any part of a statement or data description
entry that is enclosed in brackets is optional.
Parts between matching braces ({ }l represent a
choice of mutually exclusive options.

Certain entries in the formats consist of a
capitalized word (s) followed by the word
"Clause" or "Statement. " These designate
clauses or statements that are described in
other formats, in appropriate sections of the
text.

In order to facilitate reference to lower-caee
words in the explanatory text, some of them are
followed by a hyphen and a digit or letter.
This modification does not change the
syntactical definition of the word.

Alternate options may be explained by
separating the mutually exclusive choices by a
vertical stroke, e.g.:

AREA I annas is equivalenr ro
{^**t}

10. The ellipsis (...) indicates that the
immediately preceding unit may occur once r ox

. any number of times in succession. A unit
means either a single lower-case word, 6F_E
group of lower-case words and one or more
reserved words enclosed in brackets or braces.
If a term is enclosed in brackets or braces,
the entire unit of which it. is part must be
repeated when repetition is specified.

1 1. Optional elements may be indicated by

i::;":?";::*"il;;":3n,::":13"1:'i;"3i3xii:i ;::
to clarity.

12. 'Comments, restrictions, and clarj-f ication on
the use and meaning of every format are
contained in the appropriate sections of this
manual.

1.5 Level Numbers and Data-Names

For purposes of processing, the contents of a file
are divided into logical records, with leve1 number
01 initiating a logical record description.
Subordinate data items that constitute a logical
record are grouped in a heirarchy and identified

6.

7.

8.

9.

COBOL-8o Reference lr{anual
Fundamental Concepts of COBOL

Page 'l1

with level numbers 02 to 49, not necessarily
consecutive. Additionally, level number 77
identifies a "stand alone" item in Working Storage
or Linkage Sections; that is, it does not have
subordinate elementary items as does level 01.
Level 88 is used to define condition-names and
associated conditions. A level number less than 10
may be written as a single digit.
Levels allow specification of subdivisions of a
record necessary for referring to data. Once a
subdivision is specified, it may be further
subdivided to permit more detailed data reference.
This is illustrated by the fotlorving weekly
timecard record, which is divided into four major
items:' name, employee-number, date and hours, witft
more specific information appearing for name and
date.

LAST-NAME
FIRST-INIT
I\,lIDDLE-INIT

I4ONTH
DAY-NUI\4BER
YEAR

Subdivisions of a record that are not themselves
further subdivided are called elementary items.
Data items that contain subdivisions are known as
group items. When a Procedure statement makes
reference to a group item, the reference applies to
the area reserved for the entire group. A1I
elementary items must be described with a PICTURE
or USAGE IS INDEX clause. Consecutive logical
records (01) subordinate to any given file
represent implicit redefinitions of the same area
whereas in the !{orking-Storage section, each record
(01) is the definition of its own memory area.

Less inclusive groups are assigned numerically
higher level numbers. Level numbers of items
within groups need not be consecutive. A group
whose level is k includes all groups and elementary
items described under it until a level number less
than or equal to k is encountered.

Separate entries are written in the source program
for each level. To illustrate level numbers and
group items, the weekly timecard record in the
previous example may be described (in part) by Data
Division entries having the following level

[-**u
|

--....-
I EMPLOYEE-NUM

rrrqE-CARD -1

|
*""*r-END-DArE

f-aouns-woRKED

COBOL-8O Reference Manual
Fundamental Concepts of COBOL

Page 12

numbers, .data-names and pICTURE definitions.
O 1 TII{E.CARD.

02 NAi\4E.
03 LAST-NAME PTCTURE X(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.

02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS-END-DATE.

05 MONTH PIC 99.
05 DAY-NUMBER PIC 99.
05 YEAR PIC 99.

02 HOURS-WORKED PTCTURE 99V9.

A data-name is a word assigned by the user toidentify a data item used in a program. A
data-name always refers to a region of dati, not toa particular value. The item referred to often
assumes a number of different values durinq the
course of a program.

A data-name must begin with an alphabeticcharacter. A data-name or the key word FTLLER must
be the first word followi-ng the l-evel number ineach Record Description entryr Ers shown in the
following general format:

level number f data-name)

f rrr,r,e n I

This data-name is the defining name of the entry
and is used to refer to the associated data area(containing the value of a data item).
rf some of the characters in a record are not usedin the processing steps of a program, then the datadescription of these characters need not inclucle adata-name. rn this case, FTLLER is written in lieuof a data-name after the 1evel number.

1.6 File Names

A file is a collection of data records, such as aprinted listing or a region of floppy disk,containing individual record.s of a similar- class or
application. A file-name is defined by an FD entryin the Data Division's File Section. FD is ;
reserved word which must be followed by a uniqueprogrammer-supplied word ca1led the file-name.
Rules for composition of the file-name word areidentical to those for data-names (see Section
1.3) . References Lo a file-name appear in
Procedure statements OPEN, CLOSE and READ, l" well

COBOL-80 Reference Manual
F'undamental Concepts of COBOL

1.7

Page 1 3

as in the Environment Division.

Condition-Names

A condition-name is defined in 1evel 88 entries
within the Data Division. ft is a name assj.gned to
a specific value, set or range of 'values, within
the complete set of values that a data item may
assume. Ru1es for formation of name words are

statements employing them are given in the chapters
devoted to Data and Procedure Divisi-ons.

lvlnemonic-Names

specified in Section 1.3.
condition-name declarations

Explanations of
and procedural

Environment
oT DISPLAY

word to an
PRINTER. A
the rules in

1.8

A mnemonic-name is assigned in the
Division for reference in ACCEPT
statements. It assigns a user-defined
implementor-chosen name, such as
mnemonic-name is composed according to
Section 1.3.

1.9 Literals

A literal is a constant that is not identified by a
data-name in a program, but is completely defined
by its own identity. A literal is either
non-numeric or numeric.

Non-Numeric Literals

A non-numeric literal must be bounded by matching
quotation marks or apostrophes and may consist of
any combination of characters in the ASCII set,
except quotation marks or apostrophe, respectively.
Alt spaces enclosed by the quotation marks are
included as part of the literal. A non-numeric
literal must not exceed 120 characters in length.

The following are examples of non-numeric 1iterals:
I'ILLEGAL CONTROL CARD''

I CHARACTER-STRING '

"DOrs & DONrTrSrt

Each character of a non-numeric literal (following
the introductory delimiter) may be any charactei
other than the delimiter. That is, if the literal

COBOL-80 Reference Manual
Fundamental Concepts of COBOL

Page 14

is bounded by apostrophes, then quotation (") marks
may be within the literal, and vi_ce versa. Lenqth
of a non-numeric literal excrG EFffierimiteis;
minimum length is one.

A succession of two "delimiters" rvithi_n a literal
is interpreted as a single repffiTation of thedelimiter within the Iiteral.
Non-numeric literals may be ,'continued,' from one
line to the next. When a non-numeric literal is of
a length such that it cannot be contained on oneline of a coding sheet, the following rules apply
to the next line of coding (continuation line):
1. A ,hyphen is placed

continuation line.
in column 7 ot

A should be

the

the2. A delimiter is placed in Area B preceding
continuation of the literal.

3. A11 spaces at the end of the previous line and
any spaces following the delimiter in thecontinuation line and preceding the final
delimiter of the literal are considered to bepart of the literal.

4. On any continuation line, Area
bIank.

Numeric Literals

A numeric literal must contain at least one and not
more than 18 digits. A numeric l-itr: .aI may consist
of the characters 0 through 9 (optir a1ly preceded
by a sign) and the decimal point. rt may contain
only one sign character and only one decimal point.
The sign, if present, must appear as the leftmost
character in the numeric literal. If a numeric
literal is unsigned, it is assumed to be positive.
A decimal point may appear anywhere within the
numeric literal, except as the rightmost character.
If a numeric literal does not contain a decimal
point, it is considered to be an integer.
The following are

72 +1011

examples of numeric literals:
3.14159 -6 -.333 0.5

By use of the Environment specification
DECIMAL-POINT IS COI\0"1A, the functions of characters
period and comma are interchanged, putting the
"European" notation into effect. In this case, the

COBOL-8O Reference Manual
Fundamental Concepts of COBOL

Page 15

when written asvalue of "pi" would be 311416
numeric literal.

1.10 Figurative Constants

A figurative constant is a special type of literal.rt represents a value to whith a staiiard data-namehas been assigned. A figurati-ve constant is notbounded by quotation marks.

ZERO may be used in many places in a program as anumeric literal, other figurative constants areavailable to provide non-numeric datai thereserved words representing various characters areas roJ.J"ows:

the blank character represented
by "octal" 40

LOW-VALUE the character whose ',octal"
HrcH-vAr.uE ff:':;:::::::",i:=:o,,octa1,,
euorE ffi:';::l:i::;"-:iu]',lno"" ,,octa1,,

representation is 42 (7-g in
punched cards)

ALL literal one or more instances of the
literal string, which must be
non-numeric or a figurative
constant (other than ALL
literal), in which case ALL is
redundant but serves for
readability.

The plural forms of these figurative constants areacceptable to thg compilei but are equivalent j_neffect. A figurative constant ,up."""rrt" as manyinstances of the associated ftii"..", as arerequired in the context of the statement.

4 figurative constant may be used anywhere aliteral is called for in a "general-iormai" .*..pithat whenever the literal is -re"tti.t"a
to ueingnumeric, the only figurative constant permitted isZERO.

Structure of a Program

SPACE

Every coBol source program is divided into fourdivisions- Each aivision must be placed in itsqTopef seguence, and each must begin with adivision header.

1.11

COBOL-80 Reference Manual
Fundamental Concepts of COBOL

Page 16

and theirThe four divisions, listed in seguence,
functions are:

IDENTIFICATfON DIVISION, which names the
Pr3gram.

ENVIRONMENT DIVISION, which indicates the
computer equipment and features to be usedin the program.

DATA DIVISION, which defines the names and
characteristics of data to be processed.

PROCEDURE DIVfSTON, which consists of
statements that direct the processing of
data at execution time.

The following skeletal coding defines program
component structure and order.

COBOL-8O Reference l{anual Page 17

IDENTITICATION DIVISION.

PROGRAM-fD. program-name.

IAUTHOR. comment-entry .. .]

IINSTALLATION. conrment-entry . . .]

[DATE-WRITTEN. conrment-entry . . .]

IDATE-COMPILED. conrment-entry . ..]

ISECURITY. comment-entry .. .]

ENVTRONMENT DIVTSION.

ICONFIGURATION SECTION.]

ISOURCE-CO]'IPUTBR. entryl

IOBJECT-COIIPUTER. entryl

ISPECIAL-NAMES. entry]

ITNPUT-OUTPUT SECTTON.

FILE-CONTROL. entry

II-O-CONTROL. entry .. .] I

DATA DIVISION.

lrrl,E sEcTroN.

Ifile description entry

record description entry ...]...]

IWORKING-STORAGE SECTION.

[data it,em description entry ...]...1

ILINKAGE SECTION.

ldata item description entry ...] ... l

PROCEDURE DIVISION IUSING identifier-1 ...].

IDECLARATrvEs.

{section-name SECTION. USE Sentence.

[paragraph-name. [sentence] ... I ...] ...
END DECLARATIVES.]

| [section-name SECTION.]

[paragraph-name. lsentence] ... I ...].. .

COBOL-80 Reference l"Ianual
Fundamental Concepts of COBOL

Page 1 I

Coding Rules

Since Microsoft COBOL is a subset of AmericanNational Standards Institute (ANSI) COBOL, programs
may be written on standard COBOL coding sheets, andthe following rules are applicable.
1. Each line of code should have a six-digit

sequence number in columns 1-6, such that the
punched cards are in ascending order. Blanks
are also permitted in columns 1-6.

2. Reserved words for division, section, andparagraph headers must begin in Area A (columns
B-1 1). Procedure-taiEs must also appear inArea A (at the point where they are defined).
Level numbers may appear in Area A. Level
numbers 01 , 77 and level indicator rrFD. must
begin in Area A.

3. A11 other program elements should be confined
to columns 12-72, gioverned by the other rules
of statement punctuation.

4. Columns 73-80 are ignored by the compiler.
Frequently, these columns are used to containthe deck identification.

5. Explanatory comments may be inserted on any
line within a source program by placing anasterisk in column 7 of the 1ine. The]ine
will be produced on the source listing butserves no other purpose. If a slash (/)
appears in column 7, the associated card is
treated as comments and will be printed at the
top of a new page when the compiler lists the
Program.

6. Any program element may be "continued', on the
following line of a source program. The rules
for continuation of a non-numeric ("quoted',)
Iiteral are explained in Section 1:9. Any
other word or literal or other program element,
is continued by placing a hyphen in the column
7 position of the continuation 1ine. The
effect is concatenation of successive word
parts, exclusive of all traiting spaces of the
last predecessor word and all leading spaces of
the first successor word on the continuation
line. On a continuation line, Area A must be
blank.

1 .12

1.14

COBOL-80 Reference Manual
Fundamental Concepts of COBOL

Page 19

1.13 Qualification of Names

When a data-name, condition-name or paragraph name
is not unique, procedural reference thereto may be
accomplished uniquely by use of qualifier names.
For example, if there were two or more items named
YEAR, the qualified reference

YEAR OF HIRE-DATE

might differentiate between year
HIRE-DATE and TERMINATION-DATE.

fields in

Qualifiers are preceded by the word OF or fN;
successive data-name or condition-name qualifiers
must dAsignate lesser-leve1-numbered groups that
contain all preceding names in the composite
reference, i.e., HIRE-DATE must be a group item (or
file-name) containing an item called YEAR.
Paragraph-names may be qualified by a section-name.

The maximum number of qualifiers is one for aparagraph-name, five for a data-name orcondition-name. File-names and mnemonic-names must
be unique.

A qualified name may only be written in theProcedure Division. A reference to amultiply-defined paragraph-name need not bequalified when referred to from within the same
section.

COPY Statement

The statement COPY text-name incorporates into asource program a body of standard COBOL codemaintained in a "COpy Library" as a distinctly
named (text-name) entity. A copy statement must beterminated by a period. A COpy statement may
fppear anywhere except within the copied entityitself.

The effect of copying is to augment the sourcestream processed by the compiler by insertion ofthe copied entity in place of the coFy statement,
and then to resume processing of the primary sourceof input at the end of the copied entity.
After the text-name operand of a copy statement,the remainder of the source card must be blank(through column 72).

COBOL-80 Reference Manual

CHAPTER 2

Identification and Environment Divisions

2.1 Identification Division

Page 20

Every COBOL program begins with the header:
IDENTIFICATION DIVISION. This division is divided
into paragraphs having preassigned names:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRTTTEN.
DATE-COI4PILED.
,SECURITY.

pro9ram-name.
comments.
comments.
comnents.
comments.
cornments.

Only the PROGRAM-ID paragraph is required, and it
must be the first paragraph. Program-name is any
alphanumeric string of characters, the first of
which must be alphabetic. Only the first 6 -
characters of program-name are retained by the
compiler. The program-name identifies the object
program and is contained in headings on compilation
listings.

The contents of any other paragraphs are of no
consequence, serving only as documentary remarks.

coBol-8O Reference Manual Page 21
Identification and Environment Divisions

2.2 Environment Division

The Environment Division specifies a standard
method of expressing those aspects of a COBOL
program that are dependent upon physical
characteristics of a specific computer. It is
required in every program.

The general format of the Environment Division is:

ENVIRONMENT DIVISTON.

CONFIGURATION SECTTON.

SOURCE-COMPUTER.. Computer-name IWITH DEBUGGING MODE].

OBJECT-COMPUTER. Computer-name
@ inres6r woRDs I cnanacrERs I MoDULESI

tpnocnau coLLATrNc snor.lnllcn rs AscrIT.

SPECIAL-NAMES. IPRINTER IS mnemonic-name] ASCII IS STANDARD-1
NATIVE

ICURRENCY SrcN IS literall

IDECTMAL-POTNT rS COMMAI .

INPUT-OUTPUT SECTION.

FILE-CONTROL. {fife-control-entry } . . .

r-o-coNTRoL.

[SAIvlE AREA FOR file-name-2...] ...

COBOL-80 Reference lvlanual
Identification and Environment Divisions

Page 22

2.2. 'I CONFIGURATION SECTION

The CoNFIGURATION SECTION, which has three possible
paragraphs, is optional. The three paragraphs are
SOUnCS-COMPUTER' OBJECT-COMPUTER' and SPECIAL-
NAMES. The contents of the first two paragraphs
are treated as commentary, except for the clause
WITH DEBUGGING MODE, if present (see Section 4.23).
The third paragraph, SPECIAL-NAMES, relates
implementor names to user-defined names and changes
detault editing characters. The PRINTER IS phrase
allows definition of a name to be used in the
DISPLAY statement with UPON-

In case the currency symbol is not supposed to be
the dollar Sign, the user may specify a single
character non-numeric literal in the GURRENCY SIGN
clause. However, the designated character may not
be a quote mark, nor any of the characters defined
for Picture representations' nor digits (0-9).

The "European', convention of separating integer and
fraction positions of numbers with the comma

character is specified by employment of the clause
DECIMAL-POINT IS COMMA.

Note that the reserved' word IS is required in
entries for currency sign definition and
decimal-point convention specification.

The entry ASCII IS NATIVE/STANDARD-1 specifies that
data representation adheres to the American
standard code for information interchange.
However, this convention is assumed even if the
escrr-entry is not specifically present. In this
compiler, NATIVE and sTANDARD-1 are identical' and
reflr to the character set representation specified
in Appendix IV.

2.2.2 INPUT-OUTPUT SECTION

The second section of the Environment Division is
mandatory unless the program has no data filest it
begins with the header:

INPUT-OUTPUT SECTION.

This section has two paragraphs: FILE-CONTROL and
I-O-CONTROL. In this section, the programmer
defines the file assignment parameters, including
specification of buffering.

COBOL-8O Reference
Identification and

Manual
Environment Divisions

Page 23

2.2.2.1 FILE-CONTROL ENTRY (SELECT EIITRY)

For each file having records described in the Data
Divisionr s File Section, a Sentence-Entry
(beginning with the reserved word SELECT) is
required in the FILE-CONTROL paragraph. The format
of a Select Sentence-Entry for a sequential file
is:

SELECT file-name ASSTGN TO DrSK I pRrnffin

IRESERVE integer AREAS I annal

IFILE STATUS IS data-name-11

lAccEss MoDE
SEQffiIAI].

IS SEQUENTIAL][ONCANIZATION

All phrases after TTSELECT filename" can be in any
order. Both the ACCESS and ORGANIZATION clauses

IS

are optional for
processing. For
alternate formats are
and are explained
Relative files.

sequential input-output
Indexed or Relative files,
available for this section,

in the chapters on Indexed and

If the RESERVE clause is not present, the compiler
assigns buffer areas. An integer number of buffers
specified by the Reserve clause may be from 1 to 7,
but any number over 2 is treated as 2.

In the FILE STATUS entry, data-name-1 must refer to
a two-character Working-Storage or Linkage item of
category alphanumeric into which the run-time data
management facility places status information after
an I-O statement. The left-hand character of
data-name-l assumes the values:

I 0 | for successful completion
| 1 | for End-of-File conditiont2t for Invalid Key (only

for Indexed and Relative files)r3r for a non-recoverable (I-0) errort9r for implementor-related errors
(see Userr s Guide)

The right-hand character of data-name-1 is set tor0r if no further status information exists for the
previous I-O operation. The following combinations
of values are possible:

COBOL-80 Reference Manual Page 24
Identification and Environment Divisions

File Status Left File Status Riqht Meaninq

r0r r0r o-K.r1r r0r EOFr3r r0r Permanent errort3t |4t - Disk space full
For val ues of status-right when status-Ieft has a
value of '2t , s.ee the chapters on Indexed or
Relative files.

2.2.2.2 I-O-CONTROL PARAGRAPH

The SAME AREA specification is optional. It
permits the progranmer to enumerate files that are
open only at mutually exclusive times, in order
that they may share the same I-O buffer areas and
conserve the utilization of memory space.

The format of the SAI\,IE AREA entry (which desiqnates
files that all share a corTrmon f-O area) j-s:

SAI1E AREA FOR file-name-2 fil-e-name-3...

Fi1es named in a given SAI1E AREA clause need not
all have the same organj-zation or access. However,
no file may be listed in more than one SAI{E AREA
clause.

COBOL-80 Reference Manual

CHAPTER 3

Data Division

Page 25

The Data Division, which
a program, is subdivided
Working-storage Section
discussed in Secti-ons 3.
specification that aPPIY

is one of the required divisions in
into three sections: File Section,
and Linkage Section. Each is
13-3.15, but first, asPects of data
in all sections will be described.

3.1 Data Items

Several types of data items
COBOL "programs. These data
the following paragraPhs.

can be described i-n
items are described in

3.1.1 Group Items

A group item is defined as one having further
subdivisions, so that it contains one or more
elementary items. In addition, a group item may
contain other groups. An item is a group item if'
and only if, its level number is less than the
level number of the immediately succeeding item.
If an item is not a grouP item, then it is an
elementary item. The maximum size of a group item
is 4095 characters.

3.1 .2 Elementary Items

An elementary item is a data item containing no
subordinate items.

Alphanumeric rtem: An alphanumeric item consists
o@bt6Eation of characters, making a
"character string" data field. If the associated
picture contains "editing" characters, it is an
alphanumeric edited item.

Report (Edited) Item: A report item is an edited
Sirmeriffintaining only digits and,/or
special editing characters. It must not exceed 30
characters in length. A report item can be used
only as a receiving field for numeric data. It is
designed to receive a numeric item but cannot be
used as a numeric item itself.

COBOL-8O Reference Manual
Data Division

3.1.3 Numeric Items

Numeric items are elementary
contain numeric data onIy.

Page 26

items intended to

External Decimal Item: An external data item is an
ffi-E lmffi- one computer character (byte) is
employed to represent one digit. A maximum number
of 18 digits is permitted; the exact number of
digit positions is defined by writing a specific
number of 9-characters j-n the PICTURE description.
For example, PICTURE 999 defines a 3-digit item.
That is, the maximum decimal value of the item j-s
nine hundred ninety-nine.

If Ihe'PICTURE begins with the letter S, then the
item also has the capability of containing an
"operational sign. " An operational sign does not
occupy a separate character (byte), unless the
"SEPARATE" form of SfGN cl-ause is included in the
itemr s description. Regardless of the form of
representation of an operational sign, its purpose
is to provide a sign that functions in the normal
algebraic manner.

The USAGE of an external decimal item
(see USAGE clause, Section 3.4).

is DISPLAY

Internal Decimal Item: An internal decimal item is
ffi-Tn-pt&"A GTmal format. rt is attained by
inclusion of the COMPUTATIOI.IAL-3 USAGE clause.

A packed decimal item def ined by n 9's in its
PICTURE occupies 1/2 of (n + 2) bytes in memory.
A11 bytes except the rightmost contain a pair of
digits, and each digit is represented by the binary
equivalent of a valid digit value from 0 to 9. The
itemr s low order digit and the operational sign are
found in the rightmost byte of a packed item. For
this reason, the compiler considers a packed item
to have an arithmetic sign, even if the original
PICTURE lacked an S-character.

Binary ltem: A binary item uses the base 2 system
Eo lepresent an integer in the range -32768 to
32767. It occupies one 16-bit word. The leftmost
bit of the reserved area is the operational sign.
A binary item is specified by USAGE IS
COMPUTATIONAL.

Index Data-Item: An index-data item has no
pFuns; UsAGE rs TNDEX. (Refer to chapter 6 ,
"Table Handling by the Indexing Method.")

COBOL-8O Reference Manual
Data Division

3.2

Page 27

(USAGE-clause)

DATA DESCRIPTION ENTRY

A Data Description entry specifies the
characteristics of each field (item) in a data
record. Each item must be described in a separateentry in the same order in which the items appear
in the record. Each Data Description entryconsists of a level number, a data-name, and a
series of independent clauses followed by a period.

The general format of a Data Description entry is:

level-number {$ili;l"t"} (REDEFTNES-clause) (JUsrrFrED-crause)

(PrcruRE-clause) (usaGE-clause) (syNcHRoNrzED-clause)

(oCCURs-clause) (sLaNK-clause) (var,uE-clause) (srcn-clause).

When this format is applied to specific items ofdata, it is limited by the nature of the data beingdescribed. The format allowed for the description
of each data type appears below. Clauses that arenot shown in a format are speci-fically forbidden inthat format. Clauses that are mand.atory in thedescription of certain data items are shown withoutparentheses. The clauses may appear in any order
except that a REDEFINES-clause, if used, should
come first.
Group ftem Format

I data-namel
level-number I rrr,r,en I (ngogrrNES-clause)

(OCCURS-clause) (SrCN-clause).

Example:

O1 GROUP-NAME
02 FIELD-B PICTURE X.
02 FIELD-C PICTURE X.

NOTE

The USAGE clause may be written at a group
level to avoid repetitious writing of it atthe subordinate element level

@BOt-80 Refqrence lrlanual
Data DivLgion

3.3 FORITIATS FOR ELEMENTARY ITEMS

Page 28

PICTURE IS an-form (USAGE IS DISPLAY) (JUSTIFIED-ctause)

(vALuE rs non-numeric-literal) (syucHRoNrzED-clause).

Examples:

02 Mrsc-l Prc x(53).
02 MISC-2 PICTURE BXXXBXXB.

REPORT IfEl,I (also called a numeric-edited item)

ALPHANUMERIC ITEII (also called a character-string item)

revel-number {$?li;lt"tt} (REDEFTNES-clause) (occuRs-ctause)

I data-namel
level-number IFTLLER,(REDEFTNES-crause) (occuRs-clause)

PrcruRE rs report-form (BLANK I{HEN zERo) (usAGE rs DrspLAy)

I data-namel
level-number I rrr,r,nn I (nnonrrNES-clause) (occuRs-clause)

(VALUE fS non-numeric literal) (SynCHRONIZED-clause).

Example:

02 xToTAL PTCTURE $ggg,gg9.9g-.

DECIMAL ITEM

PICTURE IS numeric-form (SlGN-clause)

(USAGE-clause) (V:U.qn IS numeric-literal) (SyIICHRONIzED-clause) .

Examples:

02 HOURS-WORKED PICTURE ggvg, USAGE IS DISPLAY.
02 HOURS-SCHEDULED prc Sggvg, SrcN rS TRATLTNG.

11 TAX-RATE pIC S99V99g VALUE 1.375, COIIPUTATTONAL-3.

COBOL-80 Reference Manual
Data Division

BINARY ITEM

Page 29

level-number

(PICTURE

(OCCURS-clause)

USAGE IS

(VAIUE IS

IS numeric-form)

COMPUTATIONAL ICOI.IP I TNOEX

numeric-1itera1) (SYNCHRONI ZED-clause) .

NOTE

PICTURE or VALUE must not be given for
INDEX Data ltem.

Examples:

02 suBscRrPT coMP, VALUE ZERO.
02 YEAR-TO-DATE COMPUTATTONAL.

3.4 USAGE CLAUSE

The USAGE clause specifies the form in which
numeric data is represented.

The USAGE clause may be written at any 1evel. If
USAGE is not specified, the item is assumed to be
in TTDISPLAY" mode. The general format of the USAGE
clause is:

I data-namel
lnrlr,nn I (nrorrrNES-clause)

+
an

USAGE IS

INDEX is explained in Chapter 6, Table Handling.
COMPUTATIONAL, which may be abbreviated COMP, usage
defines an integer binary field. COMPUTATIONAL-3,
which may be abbreviated COMP-3, defines a packed
(internal decimal) field.
If a USAGE clause is given at a group level, it
applies to each elementary item in the group. The
USAGE clause for an elementary item must not
contradict the USAGE clause of a group to which the
item belongs.

(CoMPUTATTONAL)
f FDEx- t
I Dfspmv I
I coupurarrollar,-g J

COBOL-8O Reference Manual
Data Division

Page 30

3.5 PICTURE CLAUSE

The PICTURX clause specifies a detailed description
of an elementary level data item and may include
specification of special report editing. The
reserved word PICTURE may be appreviated PIC.

The general format of the PICTURE clause is:

PICTURE IS

There are three possible tYPes of
pictures: An-form, Numeric-form and Report-form.

An-Form Option: This option applies to
ETp-ha-numeri6-l6Eracter string) items . The PTCTURE
of an alphanumeric item is a combination of data
description characters X' A or 9 and, optionally,
editing characters B' 0 and /. An X indicates that
the character position may contain any character
from the computerrs ASCII character set. A Pictur:e
that contains at least one of the combinations:

f.r-form - I
{ numerac-rorm }

Ireport-form]

(a)
(b)
(c)

A and 9, or
X and 9t or
XandA

in any order is considered as if every 9, A or X

character were X. The characters B, 0 and ,/ may be
used to insert blanks or zeros or slashes in the
item. This is then cal1ed an alphanumeric-edited
item.

If the string has only Ar s and B's, it is
considered alphabetic; if it has only 9's, it is
numeric (see below).

Numeric-Form Option: The PICTURE of a numeric item

-

a valid combination of the followingmay contain
characters:

9 The character 9 indicates that the actual
or conceptual digit position contains a
numeric character. The maximum number of
9's in a PICTURE is 1 B.

V The optional character V indicates the
position of an assumed decimal point.
Since a numeric itern cannot contain an
actual decimal pointr €In assumed decj-mal
point is used to provide the compiler
with information concerning the scalingl

COBOL-8O Reference Manual
Data Division

presentation of
characters that
report item are as

Page 31

alignment of items involved in compu-
tations. Storage is never reserved for
the character V. Only one V is permitted
in any single PICTURE, and is re-
dundant if it is the rightmost character.

S The optional character S indicates that
the item has an operatj-onal- sign. It must
be the first character of the PICTURE.
See also, SIGN clause, Section 3.12.

P The character p indicates an assumed
decimal scaling position. It is usedto specify the location of an assumed
decimal point when the point is not'within the number that appears in thedata item. The scaling polition character
P is not counted in the size of the dataitem; that is, memory is not reserved
for these positions. However, scalJ-ngposition characters are counted in
determining the maximum number of diqitpositions (18) in numeric edited iterisor in. items that appear as operands inarithmetic statements. The scaling
positJ-on character p may appear onfy
to the left or right of the other char-acters in the string as a continuous
string of p's within a PICTURE
description. _The sign character S andthe assumed decimal_ point V are theonly characters which may appear tothe left of a leftmost string of p I s.Since the scaling position character p
implies an assumed decimal point (to
the left of the p's if the p,s are left-
most PICTURE characters and to theright of the p,s if the p,s arerightmost PICTURE characters) r the
assumed decimal point symbol V is re_
dundant as either the leftmost orrightmost character vrithj_n such a
PICTURE description.

Report-Form Option:
fcem surtable as

This option describes a dataan "edited" receivinq field for
a numeric va1ue. The editincl
may be combined to describe ;
follows:

9v. z cRDBr$+*BO-P/
characters 9, p and V have the same meaning asa numeric item. The meanings of the other

The
for

COBOL-80 Reference Manual
Data Division

Page 32

allowable editing characters are described as
follows:

The decimal point character specifies
that an actual decimal point is to be
inserted in the indicated position and
the source item is to be aligned accord-
ingly. Numeric character positions to
the right of an actual decimal- point in
a PICTURE must consist of characters of
one type. The decimal point character
must not be the last character in the
PICTURE character string. Picture
character rPr mav not be used if '.'
is used.

Z The characters Z and * are called* yeplacement characters. Each one repre-
sents a digit position. During execu-
tion, leading zeros to be placed in
positions defined by Z or * are
suppressed, becoming blank or *. Zero
suppression terminates upon encounter:ing
the decimal point (. or V) or a non- zero
digit. A1l digit positions to be modi-
fied must be the same (either Z or *),
and contiguous starting from the left.
Z or * may appear to the right of an
actual decirnal point only if gll digit
positions are the same.

CR CR and DB are called credit and debi t
DB symbols and may appear only at the rigl-rt

end of a PICTURE. These symbols occupy
two character positions and indicate
that the specified symbol is to appear
in the indicated positions if the value
of a source item is negative. If the
value is positive or zeto, spaces wil-l-
appear instead. CR and DB and + and
are mutually exclusive.

, The conma specifies insertion of a comma
between digits. Each insertion character
is counted in the size of the data itern,
but does not represent a digit posil-ion.
The comma may also appear in conjunction
with a floating stringr ds described be-
Iow. It must not be the last character
in the PICTURE character strj-ng.

A floating string is defined as a leading,
continuous series of one of either $ or + or - r or
a string composed of one such character interrupted

COBO:. *E0 Reference Manual
Data 'ivision

PICTURE

$$ $ eee

Numeric Value

14
-456
14

Developed Item

bb$014
bbbbbb-4s5
bbb$ 1 4

Page 33

by one or more insertion commas and/or decimarpoints. For example:

$$, $$$, $$$
++++

+(8).++
$$, $$$. $$

A froating string containing N + 1 occurrences of $or + or - defines N digit positions. When moving anumeric value into a reporl item, the appropriitecharacter floats from reft to rightr so that thedeveloped report item has exactly one actuaL $ or +or immediately to the left of the mostsignificant nonzero digit, in one of the positions
indicated by $ or + or in the PICTURE. Blanksare placed in arl character positions to the leftof the single developed $ or + or If the mostsignificant digit appelrs in a position to theright

_ of positions defi-ned by the froating string,then the developed item contains $ or * or - in tierightmost position of the floating string, andnon-significant zeros may folrow. Th; presen-e ofan actual or implied decimal point i; a floatingstring is treated as if a1l digit positions to theright of the point were indicatld by the prcruRE
character 9 . rn the following 6xampl_es, brepresents a blank in the developed items.

, ,999
$$$$ $$

A floating string need not constitute the entirePrcruRE of a report itemr ds shown in the preceainfexamples. Restrictions on characters irrat ma;follow a floating string are given later in thadescription.

when a comma appears to the right of a froatingstring, the string character floats through th;
comma in order to be as close to the reading -aigii
as possible.

+ The character * or - may appear in a
PICTURE either singly oi in- a floatingstring. As a fixed sign controlcharacter, the * or - must appear as thelast symbol in the PICTURE. iire plus signindicales rhat rhe "i;;-"r-tt"-ilem isindicated by either a plus or minus

COBOL-8O Reference Manual
Data Division

Page 34

placed"in the character position, de-
pending on the algebraic sign of the
numeric value placed in the report fie1d.
The minus sign indicates that blank or
minus is placed in the character position,
depending on whether the algebraic sign
of the numeric value placed in the report
field is positive or negative, respectively.

B Each appearance of B in a picture repre-
sents a blank in the final edited value.

/ Each slash in a picture represents a
slash in the final edited value.

0 Each appearance of 0 in a picture
represents a position in the final edited
value where the digit zero will appear.

Other rules for a report (edited) item PICTURE are:

1. The appearance of one type of floating string
precludes any other floating string.

2. There must be at
character.

Ieast one digit position

The appearance of a floating sign string or
fixed plus or minus insertion character
precludes the appearance of any other of the
sign control insertion character, namely, +, - tcR, DB.

The characters to the right of a decimal point
up to the end of a PICTURE, excluding the fixed
insertion characters +, - t CR, DB (if present) ,are subject to the follorving restrictions:
€r. Only one type of digit position character

may appear. That is, Z * 9 and
floating-string digit position characters $+ - are all 6, mutually exclusive.

b. If one of the numeric character t

positions to the right of a decimal point
is represented by + or or $ or Z, then
all the numeric character positions in the

PICTURE must be represented by the same
character.

The PICTURE character 9 can never appear to the
left of a floating stringr or replacement
character.

3.

4.

-

5.

COBOL-80 Reference Manual
Data Division Page 35

at the

Additional notes on the PICTURE Clause:

1. A PICTURE clause must only be used
elementary leve1.

2. An integer enclosed in parentheses andfollowing X 9 $Zp *B oi+indicatesthe
number of consecutive occurrences of the
PICTURE character.

3. characters v and p are not counted in the spaceallocation of a data item. CR and DB oclupytwo character positions.
4. A maximum of 30 character positions is arlowedin a PICTURE character ltring. For example,

PICTURE X (89) consists of five PICTUREcharacters.

5. A PrcruRE must consist of at least one of thecharactersAZ*Xgoratleasttwo
consecutive appearances of the + or or $characters.

6. The characters t. t S V CR and- only once in a pICTURE.
DB can appear

7. when DEcTMAL-porNT rs colo4A is specified, theexplanations for period and conma areunderstood- to apply to comma and period,respectively.

t!: examples below i1r-ustrate the use of prcruRE toedit data. rn each example, a movement of data isimpliedr 6rs indicated lV the column headings.(Data value shows conteits in storage; scalefactor of this source data area is given by thePicture.)

COBOL-80 Reference Manual
Data Division

Source Area Receivinq Area

PTCTURE

e (5)
e (s)
e (s)
9 (4)v9
v9 (s)
s9 (s)
se (s)
s9 (s)
s9 (s)
e (s)
e (s)
se (s)
s999v99
s999v99

3.6 VALUE CLAUSE

PICTURE

$$$,$$9.99
$$$,$$e.e9
$$$,$$e.ee
$$$, $$e. e9
$$$,$$e.99
------- . 9 9
______- . 9 9
+++++++, 9 9
_______ . 9 9
+++++++. 9 9
------- . 9 9
*****'k*.99CR

zzzvzz
zzzvzz

Page 36

Edited Data

$12,345. 00
$123.00

$0.00
$1 ,234.50

$0.12
123.00
-1.00

+1 23.00
1 .00

+1 23. 00
123.00

** 12345.00
2345

04

Data
Value

12345
00123
00000
12345
12345
00123
-0000 1

00123
0000 1

00123
00123
12345
02345
00004

The VALUE clause
working-storage
is:

VALUE IS literal

specifies the initial value of
items. The format of this clause

The VALUE clause must not be written in a Data
Description entry that also has an OCCURS or
REDEFINES clause t or i-n an entry that is
subordinate to an entry containing an OCCURS or
REDEFINES clause. Furthermore, it cannot be used
in the File or Li-nkage Sections, except in level BB
condition descriptions.

The size of a literal given in a VALUE clause must
be less than or equal to the size of the item as
given in the PTCTURE clause. The positioning of
the literal within a data area is the sarne as woul-d
result from specifying a MOVE of the literal to the
data area, except that editing characters in the
PICTURE have no effect on the initialization, nor
do BLANK WHEN ZERO or JUSTIFIED clauses. The type
of literal written in a VALUE clause depends on the
type of data itemr ds specified in the data item
formats earlier in this text. For edited items,
values must be specified as non-numeric literals,
and must be presenLed in edited form. A figurative
constant may be given as the Iit,eraI.
When an initial value is not specifiedr Do
assumption should be made regarding the initial

COBOL-80 Reference Manual
Data Division Page 37

contents of an item in Working-Storage.

The vALUE clause may be specified at the grouplevel, in the form of a coriectly sized non-numericriteralr or a figurative constant. rn these casesthe VALUE clause cannot be stated at thesubordinate levels with the group. However, thevalue crause should not b; wiitten for a groupcontaining items with descriptions incrrlain-g
JUSTfFIED, SYNCHRONIZED and USAGE (other than USAGEIS DISPLAY). (A form used in leve1 gB items isexplained in Section 3.16)

3.,7 REpEFTNFS CLAUSE

The REDEFTNES clause specifies that the same areais to contain differeit data itemsr or provides anarternative grouping or description of the samedata. The format of the REDEFTNES cr-ause is:
REDEFINES data-name.2

when written, the REDEFTNES clause shourd be thefirst clause folrowing the data-name that defines
!h" entry. The data description entry fordata-name-2 should not contain i nuosrrNns clause,nor an OCCURS clause.

when an area is redefined, all descriptions of thearea remain in effect. Thus, if B and c are tvroseparate items that share the same storage area dueto Redefinition, the procedure statements MOVE x roB or I'IOVE Y TO C could be executed at any point inth9 program. rn the first case, B would-alsume thevalue of X and take the form specified by ah;descri-ption of B. rn the """oid case, tha samephysical area would receive y according to thedescription of C.

Tot purposes of discussion of Redefinition,data-name-1 is termed the subject, and data-name-2is called the object. The 1ev61s of the subjectald _object are denoted by s and t, respectiv6fy.The following rules must ba obeyed in order toestablish a proper redefinition.
1. s must equal t, but must not equal gg.

2. Tlg "U:ect must be contained in the same record(01 group level item), unless s=t=01.

COBOL-80 Reference l"tanual
Data Division

Page 38

3. Prior to definition of the subject and
subsequent to definition of the object there
ill"oinli ::""t numbers rhar are numericatly

The length of data-name-1, murtiplied by the numberof occurrences of data-name-1, may nol exceed thelengttr of data-name-2, unless the level ofdata-name-1 is 01 (permitted only outside the FiIesection). Entries giving the new description mustnot contain any value clauses, except in level gg.
rn the File section, multiple level 01 entriessubordinate to any given FD represent implicit
redefinitions of the same area.

3.8 OCCURS CLAUSE

The occuRS clause is used in defining related setsof repeated data, such as tables, lists and arrays.rt specifies the number of times that a data ilemwith the same format is repeated. Data Description
clauses associated with an item whose descriptionincludes an occuRS crause apply to each repetitionof the item being described. When the OCCURSclause is used, the data name that is the defining
name of the entry must be subscripted or indexed
whenever it appears in the procedure Divi_sion. Ifthis data-name is the name of a group item, thenall data-names belonging to the group must be
subscripted or indexed whenever they are used.

The OCCURS clause must not be used in any DataDescription entry having a level number 01 or 77.
The OCCURS clause has the following format:

OCCURS integer TIMES IINDEXED By index-name...

Eubscripting: Subscripting provJ_des the facilityfor referring to data items in a table or list thalhave not been assigned individual data-names.subscripting is determined by the appearance of an
OCCURS clause in a data description. If an itemhas an OCCURS clause or belongs to a group having
an occuRS clause, it must be subscripted or indexed
whenever it is used. See the chapter on Table
Handling for explanations on rndexin! and rndex
Usage. (Exception: the table-name in a SEARCH
statement must be referenced without subscripts.)
A subscript is a positive nonzero integer whose
varue determines an element to which a reierence is
being made within a table or list. The subscriptmay be represented either by a literal or a

.i

COBOL-80 Reference Manual
Data Division

ELEMENT

ELEMENT

ELEMENT

I
?
3

I

(

l

)

3.9

ARRAY, consisting of twelve
characters; each item has 4
digits.

Page 39

data-name that has an integer va1ue. Whether the
subscript is represented by a literal or a
data-name, the subscript is enclosed in parentheses
and appears after the terminal space of the name of
the element. A subscript must be a decimal or
binary item. (the latter is strongly recommended,
for the sake of effj-ciency.)

At most, three OCCURS clauses may govern any data
item. Consequentty, one, two or three subscripts
may be required. When more than one subscript is
requiredl they are written in the order of
successivly less inclusive dimensions of the data
organization. MuJ-tiple subscripts are separated by
commas,, viz. fTEM (f , J).
Example:

01 ARRAY.
03 ELEMENT, OCCURS 3, PTCTURE g (4).

The above example would be allocated storage as
shown below.

A data-name may not be subscripted if it, is being
used for:

1. a subscript

2. the defining name of a data description entry
3. data-name-2 in a REDEFINES clause

4. a qualifier

SYNCHRONIZED CLAUSE

The sYNcHRoNrzED clause was designed in order toallocate space for data in an efficient manner,with respect to !h" computer central "memory.;However, in this compiler, the SyNCHRONIZUDspecification is treated as commentary only.
The format of this clause is:

SYNC I syr{cHnoNrzsp ILEFT I nrcHrl

COBOL-80 Reference Manual
Data Divi-sion

Page 40

3. 10 BLANK WHEN ZERO CLAUSE

The BLANK wiIEN zERq clause specifies that a report(editeal- field-fF-to contain nothing except branks
if the numeric value moved to it has a value of
zero. When this clause is used with a numeric
picture, the field is consj.dered a report field.

3.11 JUSTTFIED CLAUSE

The JUSTIFIED RIGI|T clause i .: nn I rr ^^nlicable tosvF
unedrted aJ.phanumeric (character string) items. Tt
signifies that val-ues ar:e stored in a riqht-to-left
f^^l-j^^]!-:*^ i- ^ rirr --r-cr>rr-L\,r1 r€bulting in space fill on the left when a
short field is moved to a longer Justified fielcl,
or in truncation on the left when a long field j-s
moved to a shorter JUSTIFIED fiefd. The JUSTIFTITD
clause is effective onty rvhen the associated field
is employed as the "receivi-ng" field in a MOVtr
statement.

four

The WOrd JUST
JUSTIF]ED.

SIGN CI,AUSE

For an external
possible manners
sign; the choj-ce
n:rtir-rrIar form
form is:

permissible abbreviation of

decimal item, there are four
of l:epresenting an operationa,rl

is controlled by inclusion of a
o f thc STGII clause, wlrosc gencrir I

as

3. 12

lsrGN ISI TRATLING I r,tnnrNC ISEPARATE CHARACTNR]

The following
possible forms

chart summarizes the effect of
of this clause.

When the above forms are written, the PICTURE must
begin with S. If no S appears, the item is not
signed (and is capable of storing only absol-ute
values), and the SIGN clause is prohibited. When S
appears at the front of a PICTURE but no SIGI{
clause is i-ncluded in an itemrs description, the

SIGN Clause

TRAILING
LEADING
TRAILING StrPARATE
LEADING SEPARATE

Embedrlcd in rightmost bytc
Embedded in leftmost byte
Stored in separate rightmost byte
Stored in separate leftmost l-rrrl-r:.

Representation

COBOL-8O Reference Manual
Data Division

Page 41

"default,, case SIGN IS TRAILING is assumed.

The SIGN clause may be written at a group level;
in this case the clause specifies the iigni s format
on any signed subordinate external decimal j,tem.
The SEPARATE CHARACTER phrase increases the size ofthe data item by 1 character. The entries to whichthe SfGN clause apply must be implicitly orexplicitly described as USAGE IS DISpLAy.

(Note: When the CODE-SET clause is specified for afite, all signed numeric data for thal file must be
descri-bed with the SIGN IS SEPARATE clause.)

3.13 FrLE SECTION, FD ENTRIES (SEQUENTIAL I-O ONLY)

In the FILE SECTION of the Data Divisionr dn FDentry (file definition) must appear for everySelected file. This entry precedes thedescriptions of the file's record structure(s).
The general format of an FD entry is:
FD file name LABEL-clause [VALUE-OF-clause]

IDATA-RECORD (S) -clausel IBLOCK-clause] [RECORD-clause]

ICODE-SET-clausel .

After ilI'D filenamer" the order of the clauses is
immaterial.

LABEL CLAUSE

The format of this required FD-entry clause is:
LABEL RBCORD I RNCONOS rs I enn oMrrrED I srauoano

The oMrrrED option specifies that no labels existfor the file; this must be specified for files
assigned to PRINTER.

The STANDARD option specifies that labels exist forthe file and that the labe1s conform to systemspecifications; this must be specified for iites
assigned to DISK.

3.13.2 VALUE OF CLAUSE

3.13.

The VALUE OF
DISK-assigned

clause appears
fiLe, and

in any FD entry for a
contains a filename

COBOL-80 Reference Manual
Data Division

Page 42

expressed as a COBOL-type
general form is:

"quoted" literal. The

VALUE OF FILE-ID IS "literal"

Examples:

VALUE OF FILE-ID "A:MASTER.ASM" (CP/M DOS)
VALUE OF FILE-ID IS "D0:X201A.L" (DTC)
VALUE OF FfLE-ID "F0:INVNT.LST" (Altalr)

A reminder: if a file is ASSIGNed to PRINTER, it
is unlabeled and the VALUE clause must not be
included in the associated FD. If a fiF is
ASSIGNed to DISK, it is necessary to include both
LABEL RECORDS STANDARD and VALUE clauses in the
associated FD. See the Userrs Guide for filename
formats for specific disk operating systems.

3.13.3 DATA RECORD(S) CLAUSE

The optl-onal
records in
documentary
Its general

DATA RECORDS clause
the file by name.

only, in this and a1l
format is:

identifies the
This clause is
COBOL sysLems.

RECORD
DATA data-name-1 [data-name-2.. .]

RECORDS

The presence of more than one data-name indicates
that the file contains more than one type of data
record. That is, two or more record descriptions
may apply to the same storage area. The order in
which the data-names are listed is not significant.

Data-name-1, data-nama-2, etc. , are the names of
ffi recorasl---EnE- each must be preceded in its
record description entry by the 1eve1 number 01, in
the appropriate file declaration (FD) in the FiIe
Section.

BLOCK CLAUSE

The BLOCK CONTAINS clause is used to specify
characteristics of physical records in relation to
the concept of logical records. The general format
is:

ISI
ARE,

3.13.4

BLOCK ..NTATNS inreger-, ICHARA.TERS]
I nnconos J

Files assigned to pRTNTER must not have a BLocKcrause in the associated FD entry. Furthermore,the BLocK crause has no effect on disk fires inthis coBol , system, but it is examined for correctsyntax' rt is normally applicable to tape files.which are not supportea UV- this COBOL.

when used, the size is usualry stated in RE..RDS,except when the records aie variabr-e in size orexceed the size of a physical block; in thesecases the size shourd b- expressed in CHARACTERS.rf multiple record sizes exisl, and if blocking isspecified, then the physicai block wilr contai_nmultiple _logicar recordi, each of which isterminated by a carriage-return line-feed.
when tr," BLocK CONTATNS clause is onitted, it isassumed that records are not bl0cked. when neitherthe CHARACTERS nor the RECORDS option is sfecified,the CHARACTERS option is assumed. when ttre nnconosoption i-s used, the compi_ler assumes that the brocksize provides for integlr-2 records of maximum sizeand then provides eaarFonar space for any requiredcontrol characters.

3.13.5 RECORD CLAUSE

since the size of each data record is defined fulryby the set of data description entries constit"ti"'g.t!" record (leve1 O1) deciaration, this cl_ause isa-l1vays optional and documentary. The format ofthis clause is:

COBOL-8O Reference Manual
Data Division

3.13.

Page 43

RECORD CONTATNS Iinteger-1 rO] integer-2 CHARACTBRS

Integer-2 should be the size ofin the file declaration. ffvariable in size, Integer_1 mustegual the size of the smallestare given as character positionsthe logical records.

6 CODE-SET CLAUSE

The format of this clause is:
CODE-SET IS ASCII

the biggest record
the records are

be specified and
record. The sizes
reguired to store

The CODE-SET clause, which.should be specified onlyfor non-mass-storage fi1es,
""r"8" only thepurposes of documentation in this co*iiler,reflecting the fact that both internai and external

COBOL-80 Reference Manual
Data Division

Page 44

data are represented in ASCII code. However, any
signed numerj-c data description entries in the
file's record should include the SIGN IS SEPARATE
clause and all data in the file should have DISPLAY
USAGE.

3.14 WORKING.STORAGE SECTION

The second section of the DATA DIVISfON begins with
the header WORKING-STORAGE SECTION. This section
describes recffiata-FETch are not part
of external data files but which are developed and
processed internally.

Data description entries in this section may employ
level numbers 01-49, as in the File sectionr &s
well as 77. Va1ue clauses, prohibited in the File
section (except for level 8B), are permitted
throughout the Working-storage section.

3.15 LINKAGE SECTTON

The third section of the Data Division is defined
by the header LII.JKAGE SECTION. In this section,
the user describes data by name and attribute, but
storage space is not allocated. fnstead, these
"dummy" descriptions are applied (through the
mechanism of the USING l-ist on the procedure
Division header) to data whose addresses are passed
into a subprogram by a cal-I upon it from a
separately compiled program. Consequently, VALUE
clauses are prohibited j_n the Linkage Section,
except in level BB condition-name entries. Refer
to Chapter 5, Inter-Program Communj_cation, for
further information.

3.16 LEVEL BB CONDITION-NAMES

The leve1 BB condition-name entry specifies a
value, list of values r or a range of values that an
elementary item may assume, in which case the named
condition is true, otherwise false. The format of
a level 88 itemr s value clause is

A level 88 entry must be preceded e5-ther by another
level 88 entry (in the case of several consecutive
condition-names pertaining to an elementary item)

";-l)
VALUE

fliteral-1 [literaI-2ISI
Iliteral-1 THRU liter

COBOL-8O Reference Manual
Data Division

Page 45

F'ILLER) .
Ievel 88

or by an elementary item (which may
INDEX data items should not be followed
items.

be
by

Every condition-name pertains to an elementary item
in such a way that the condition-name may be
qualified by the name of the elementary item and
the elementary itemrs qualifiers. A condition-name
is used in the Procedure Division in place of a
simple relational condition. A condition-name may
pertain to an elementary item (a conditional
variable) requiring subscripts. In this case, the
condition-name, when written in the procedure
Division, must be subscripted according to the same
requirements as the associated elementary item.
The tj;pe of literal in a condition-name entry must
be consistent with the data type of the condj-tional
variable. In the following example, PAYROLL-PERIOD
is the conditional variable. The picture
associated with it. limits the value of the 88
condition-name to one digit.
02 PAYROLL.PERIOD PICTURN IS 9.

88 WEEKLY VALUE IS 1.
88 SEMT.MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

Using the above description, the following
procedural condition-name test may be written:
IF MONTHLY GO TO DO-MONTHLY

An equivalent statement is:
IF PAYROLL-PERIOD = 3 cO TO DO-MONTHLY.

For an edited elementary item, values in a
condition-name entry must be expressed in the form
of non-numeric literals.
A VALUE clause may not contain both a series of
literals and a range of literals.

COBOL-80 Reference Manual

CHAPTER 4

Procedure Division

Page 46

rn this chapter, the basic concepts of the procedure
Division are explained. Advanced topics (such as rndexing
of tables, Indexed file accessing, interprogram
communication and Declaratives) are discussed in subsequenr
chapters.

4.1 STATEMENTS, SENTENCES, PROCEDURE-NAMES

The Procedure portion of a source program specifies
those ' procedures needed to solve a giiren ItDpproblem. These steps (computations, logical
decisions, etc.) are expressed in statements
similar to Eng1ish, which employ the concept of
verbs to denote actions, and statements and
sentences to describe procedures. The procedure
portion must begin with the words PROCEDURE
DIVISION.

A statement consists of a verb fol_Iowed by
appropriate operands (data-names or literals) and
other words that are necessary for the completion
of the statement. The two types of statements are
imperative and conditional.
Imperative Statements

An imperative statement specifies an unconditional
action to be taken by the object program. An
imperative statement consists of a verb and its
operands, excluding the IF and SEARCH conditional
statements and any statement which contains an
TNVALID KEY, AT END, SfZE ERRORT or OVERFLOW
clause.

Conditional Statements

A conditional statement stipulates a condition that
is tested to determine whether an alternate path of
program flow is to be taken. The IF and SEARCH
statements provide this capability. Any T/O
statement having an INVALID KEY or AT END clause is
also considered to be conditional. When an
arithmetic statement possesses a SIZE ERROR suffix,
the statement is considered to be conditional
rather than imperative. STRING oT UNSTRING
statements having an OVERFLOW clause are also
conditional.

COBOL-8O Reference Manual
Procedure Division

4.2

Page 47

Sentences

A sentence is a single statement or a series of
statements terminated by a period and followed by a
space. If desired, a semi-colon or comma may be
used between statements in a sentence.

Paragraphs

A paragraph is a logical entity consisting of zero,
one or more sentences. Each paragraph must begin
with a paragraph-name.

Paragraph-names and section-names are procedure-
names. Procedure-names fo1Iow the rules for
name-fbrmation. In addition, a procedure-name may
consist only of digits. An all-digit
procedure-name may not consist of more than 1B
digits; if it has leadj-ng zeros, they are al-t
significant.

Sections

A section is composed of one or more successive
paragraphs, and must begin with a sectj_on-header.
A section header consists of a section-name
conforming to the rules for procedure-name
formation, followed by the word SECTION and a
period. A section header must appear on a line by
itself. Each section-name must be unisue.

ORGANIZATION OF THE PROCEDURE DIVISION

The PROCEDURE part of a program may be
in three possible ways:

1. The Procedure Division consists
paragraphs.

subdivided

only of

2. The Procedure Division consists of a number of
paragraphs followed by a number of sections(each section subdivided into one or rnore
paragraphs).

3. The Procedure Division consists of a
DECLARATIVES portion and a series of sections(each section subdivided into one or more
paragraphs).

The DECLARATIVES portion of the procedure Division
is optionalr it provides a means of designating a
procedure to be invoked in the event of an f/O
error. If Declaratives are utilized., only

COBOL-8O Referencc Hanuel
Procedure Divigion

Page {8

possibility 3 may be used. Refer to Chapter 9 for
a complete discussion.

4.3 MOVE STATE!{ENT

The MOVE statement is used to move data from one
area of main storage to another and to perform
conversions andr/or editing on the data that is
moved. The MOVE statement has the followinq
format:

MOVE fdata-name-11 tO data-name-2 fdata-name-3. ..]
lriteral t -

The dat.a represented by data-name-1 or the
specified literal is moved to the area designated
by data-name-2. Additional receiving fields may be
specified (data-name-3 etc.). When a group item is
a receiving field, characters are moved without
regard to the level structure of the group involved
and without editing.

Subscripting or indexing associated with
data-name-2 is evaluated immediately before data is
moved to the receiving field. The same is true for
other receiving fields (data-name-3, etc., if any).
But for the source field, subscripting or indexing
(as5ociated with data-name-1) is evaluated only
once, before any data is moved.

To illustrate, consider the statement

MOVE A (B) TO B, C (B),

which is equivalent to -
IvlOvE A (B) TO temp
MOVE temp TO B
MOVE temp TO C (B)

where temp is an intermediate result field assigned
automatically by the compiler.

The following considerations pertain to moving
items: -
1. Numeric (external or internal decimal, binary,

numeric literalr or ZERO) or alphanumeric to
numeric or report:
a. The items are aligned by decimal points,

with generation of zeros or truncation
on either endr ds required. If source

COBOL-80 Reference Manual
Procedure Division

Page 49

is alphanumeric, it is treated as an
unsigned integer and should not be
Ionger than 31 characters.

b. When the types of the source field and
receiving field differ, conversion to
the type of the receiving field takes
place. Alphanumeric source items are
treated as unsigned integers with
Usage Display.

c. The items may have special editing per-
formed on them with suppression of zeros,
insertion of a dollar sign, etc., and
decimal point alignment, as specified

" by the receiving area.

d. One should not move an item whose PICTURE
declares it to be alphabetic or alpha-
numeric edited to a numeric or report
item, nor is it possible to move a numeric
item of any sort to an alphabetic item
though numerj_c integers and numeric report
items can be moved to alphanumeric items
with or without editing, but operational
srgns are not moved in this case even if
''SIGN IS SEPARATE" has been specified.

2. Non-numeric source and destinations:
a. The characters are placed in the receJ-ving

area from left to right, unless JUSTIFIED
RIGHT applies.

b. ff the receiving field is not completelyfilled by the data being moved, the re-
maining positions are fiIled with spaces.

c. If the source field is longer than thereceiving field, the move is terminated
as soon as the receiving field is filIed.

When overlapping fields are
are not predictable.

involved, results3.

4. Appendix II shows, in tabular form, allpermissible combinations of source andreceiving field types

An item having USAGE IS INDEX cannot appear asan operand of a MOVE statement. See SET inChapter 6, Table Handling.

5.

,1.'; ':-r ;:.j t -;j'... 1. - i.,:-'... t- ! - ' ""{'r
COBOL-80 Reference Manual '

Procedure Division

-. : i: _-:i-j.i,;.t;.r t, ,l " .:,;. ll,r:;._,',,t,|j._l.i1,. :l;-
El<aprp,iesg g,f, ,,oag,a, uovemeng ,;.(b,,fepresents blank) :

' ': :. r

4.4 INSPECT.STATEMENT
i.:::

The INSPECT statement . enables ,,t_her. :.progranrmer to
examine a chpraqtqr-stri1g,, .item. Options permit
various combinatioq? qf thg, .-following actions:

:

1 . counti ng appear?-ngqs, qf , a,,,qpg.gif1ed character
il

2. repl-acing a gpecifie{ .chastqler with another

3. limitjng lhe above .agtions, ; by requiring the
appearance of other specifj-c characters

The format of the' INSPECT statement is:

INPECT data-name-1 [TALLYINi-clause] tnnpf.aCING-c]ausel

where TALLYING-clause has the format

I cH^A,RACTERS I
TALLYING data-name-2 FoR l@l".lfaffig operand-3f

[BEFORE I eFtnn rNrTrAL operand-4]

ahd REPLACING-clause has the format

I cHanacrERs I
REPLACING laff]-@Ug I rf nsq operand.-5 | BY operand-6

lBEroRE t ot** rNrrrAL opqrandlTl

Because data-name-1 is tp,be, tfeqted;ds a string of
characters by INSPECT, it must not be described by
USAGE IS INDEX, COMP., og. pOf'lP-3.. Data-DarTl€-2 must
be a numeric data item"

In the above formats, ciperand-n may be a quoted
literal of length one, a figurative constant
signifying a single character, or a data-name of an

Source Fj eld t

PICTURE
" 1 ,.{ l

PICTUREi:I
Value after MOVE

99v99
99V99
S9V9
XXX
9V9 9

1234
1234'
12-
A2B
123

s9:9v9,?
9 9V9
99V999
xxxxx
99.99-

i , -r.f .) i '

!,Q7,6=l:.-,:":.; , .r

, .9,9 7,
987 65

,:.Ygx8w,: :.

: 87 r 6! ,,, ,-:

1 234+
123
01200+
A2Bbb
01.23

COBOL-80 Reference Manual
Procedure Division

Page 51

item whose length is one.

TALLYTNG-clause and REpLACTNG-clause may not bothbe omittedr if both are present, TALLyING-clause
must be first.
TALLYTNG-clause causes character-by-character
comparison, from left to right , of dlta-name-1,
incrementing data-name-2 by one each time a matchis found. When an AFTER INITIAL operand-4
subclause is present, the counting process beginsonry after detection of a character in data-name-1
matching operand-4. rf BEFORE rNrrrAL operand-4 isspecified, the counting process termlnates uponencountering a character in data-name-i which
matches operand-4. Also going from left to right,
REPLACTNG-clause causes replacement of characiers
under conditions specified by the REpLACTNG-cl.ause.rf BEFORE rNrrrAl operand-7 is present, replacement
does not continue after detection of a chaiacter in
data-name-1 matching operand-7. rf AFTER rNrrrAL
operand-7 is present, replacement does not conimenceuntil detection of a character in data-name-1
matching operand-7.

with bounds on data-name-1 thus determined,
TALLYTNG and REPLACTNG is done on characters asspecified by the following:
1. I'CHARACTERS" implies that every character inthe bounded data-name-1 is to be TALLyed or

REPLACEd.

2- "A11 operand" means that alr characters in thebounded data-name-1 which match the "or;erand"character are to participate in
TALLYING/REPLACING.

3 . "LEADING operand" speci f ies that onJ-ycharacters matching "operand." from the leftmoslportion of the bounded data-name- 1 which arecontiguous (such as]eading zeros) are toparticipate in TALLyING or REPLACING.

4, rrFf RST operand " specifies that only thefirst-encountered character matching "oierancl"is to parti-cipate in REPLACTNG. (rrris optionis unavail-ab1e in TALLYING.)

when both TALLYTNG and REPLACTNG crauses arepresent' the two crauses behave as if two rNsprrcrstatements were written, the first containing onrya TALLYTNG-clause and the second containing only ;REPLACING-clause

COBOL-8O Reference Manual
Procedure Division / Page 52

rn developing a TALLyTNG value, the final result indata-name-2 is _equal to the talried count plus theinitiar value of data-name-2. rn the rii"tE*pi"below, the item couNTX is assumed to have been setto zero initially elsewhere in the program.

TNSPECT ITEM TALLYING COUNTX FOR ALL I'LX REPLACING
LEADING I'AII BY ''EI' AFTER INITTAL IILI'

original (rTEM):
Result (rTEM):
Final (COUNTX) :

ALABAI\4A
ALEBAI,IA

1

NEW YORK N Y
(space)

. (period)
NEW.YORK. .N.Y. . .

SAIAMI
SALEMI

1

INSPECT WORK-AREA REPLACING ALL DELIMITER BY
TRANSFORI'IATION

Original (WORK-AREa):
original (ner,rurtER) :
Original (TRANSFORIT4ATION) :
Result (WORK-AREA) :

(1ength 1 6)

NOTE

rf any data-name-1 or operand-n is described assigned numeric, it is treated as if it rvereunsigned.

4.5 ARITHIUETIC STATEMENTS

There are five arithmetic statements: ADD,
SUBTRACT , t"t'Ulf IpLy, DIVIDE and COMPUTE. Anvarithmeti-c statement may be either imperative oi,conditional. when an arithmetic statemlnt includesan ON SfZE ERROR specification, the entirestatement is termed condj_tional, because thcsize-error condition is data-dependent.

An example of a conditionar arithmetic statement
i-s:

ADD 1 To REcoRD-couNT, oN srzE ERROR I{ovE zERo To
RECORD-COUNT, DISPLAY "LIMIT gg EXCEEDED".

Note that if a size error occurs (in this case, itis apparent that REcoRD-couNT has picture 99, andcannot hold a value of 100), both the I\IOVE and
DISPLAY statements are executed.

The three statement components that may appear inarithmetic statements (GIVING option, ROUNDED
opt .ion, and SIZE ERROR option) are- discussecl in

COBOL-80 Reference Manual
Procedure Division

Page 53

detail later in this section.

Basic Rules for Arithmetic Statements

A11 dat.a-names used in arithmetic statements
must be elementary numeric data items that are
defined in the Data Division of the program,
except that operands of the GIVING option may
be report (numeric edited) items. rndex-names
and index-items are not permissible j-n these
arithmgtic statements (see Chapter 6).

Decimal point alignment is supplied
automatj-cally throughout the computations.

Intermediate result fields generated for the
evaluation of arithmetic expressions assure the
accuracy of the result field, except where
high-order truncation is necessary,

4.5.1 SIZE ERROR OPTION

If , af ter decimal--point alignment and any lorv-or:der
rounding, the value of a calculated result exceeds
the largest value which the receiving field is
capable of holding, a size error condition exists.
The optional SIZE ERROR clause is written
immediately after any arithmetic staLement, as an
extension of the statement. The format of the SIZIT
ERROR option is:

ON SIZE ERROR imperative statement

If the SfZE ERROR option is present, and a size
error condition arises, the value of the resultanl:
data-name is unaltered and the series of j-mperative
statements specified for the condition is executed.

If the SIZE ERROR option has not been specj_fied and
a size error condition ar j-ses r rlo assumption should
be made about the final result.
An arithmetic statement, if written with SIZE ERROR
option, is not an imperative statement. Rather, it
is a conditional statement and is prohibited in
contexts where only imperative staternents are
aIlowed.

ROUNDED OPTION

1.

2.

3.

4.5.2

If, after decimal-point alignment, the number of

COBOL-80 Reference Manual
Procedure Division

4.5.3

Page 54

places in the fraction of the result is greater
than the number of places in the fractional part of
the data item that is to be set equal to the
calculated result, truncation occurs unless the
ROUNDED option has been specified.

When the ROUNDED option is specified, the least
significant digit of the resultant data-name has
its value increased by 1 whenever the most
significant digit of the excess is greater than or
equal to 5.

Rounding of a computed negative result is performed
by rounding the absolute value of the computed
result and then making the final result negative.

The following chart illustrates the relationship
between a calculated result and the value stored in
an item that is to receive the calculated result,
with and without rounding.

Item to Receive Calculated Resu1t

Calculated
Result

PICTURE Value After
Roundinq

Value After
Truncating

-12.36
8.432
35. 6
6s .6
.0055

s9 9V9
9V9
99V9
S99V
sv99 9

-12.4
8.4
35. 6
66
.006

-12.
8.4
35.6
65
.005

Illustration of Rounding

When the low order integer positions in a
resultant-identifier are represented by the
character tp' in its picture, rounding or
truncation occurs relative to the rightmost integer
position for which storage is allowed.

GIVING OPTION

If the GfVING option is written, the value of the
data-name that follows the word GIVING is made
equal to the calculated result of the arithmeLic
operation. The data-name that follows GIVING is
not used in the compu{:;,tion and may be a report
(numeric ediLed) item.

4.5.4 ADD STATEMENT

COBOL-80 Reference Manual
Procedure Division

4.5.5

Page 55

or more numerl_c varues
sum. The ADD statement

The ADD statement adds two
and stores the resulting
general format is:

J numeric-Iiteral IADD ldata-name-1 |

lro I
lGTvruc I aata-name-n I ROUNDED] t Sr zE-ERROR-clause l

When the TO option is used, the values of all the
data-names (including data-name-n) and literals in
the statements are added'fTilE--ffi-e resulting sum
replaces the value of data-name-n. At least two
data-names and/or numericTGE[s nr-ust follow the
word ADD when the GIVING option is written.
The following
statements:

are examples of proper ADD

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY.

The first statement would result in the sum of
INTEREST, DEPOSIT, and BALANCE being placed at
BALANCE, while the second would result in the sum
of REGULAR-TIME and OVERTIME earnings being placed
in item GROSS-PAY.

SUBTRACT STATEMENT

The SUBTRACT statement subtracts one or more
numeric data items from a specified item and stores
the difference.
The SUBTRACT statement general format is:

Idata-name- 1 ISUBTRACT [numeric-1iteral-1,... FROM

fdata-name-m IGIVING data-name-n] I
I numeric titerlF-cIvrNc data-name-n I

IROUNDEDI ISIZE-ERROR-clause]

The effect of the SUBTRACT statement is to sum the
values of all the operands that precede FROM and
subtract that sum from the value of the item
following FROI4.

The result (difference) is stored in data-nam€-Dr

COBOL-8O Reference Manual
Procedure Division

Page 56

if there is a GIVING option. Otherwise, the result
is stored in data-name-m.

4.5.6 MULTIPLY STATEMENT

The I4ULTIPLY statement multiplies two numeric data
items and stores the product.

The general format of the MULTIPLY statement is:

MULTIPLY fdata-name-1 t
lnumerj-c-literal- 1 |

BY fdata-name-2 [cIVrNG data-name-3] I
,l numeric-literlE2-crvrNc. data-name- 3 ,

IROUNDEDI ISIZE-ERROR-clause]

When the GIVING option is omj-tted, the second
operand must be a data-name; the product replaces
the value of data-name-2. For example' a new
BALANCE r,'alue is computed by the statement I{ULTIPLY
1.03 BY BALANCE. (Since this order might seem
somewhat unnatural, it is recommended that GIVING
always be written.)

4.5.7 DIVIDE STATEMENT

The DIVIDE statement divides two numeric values and -stores the quotient. The general format of the
DIVIDE statement is:

DrvrDEldata-name-llfsvlfdata-name-21-
Inumeric-Iiteral-1 J I rr.rro I Inumeric-l-iteraL'21

lGrvrNG data-name-31 [RoUNDED] [SrZE-ERROR-clause] -
The BY-form signifies that the first operand
(data-name-1 or numeric-literal-1) is the dividend -(numerator) r and the second operand (data-name-2 or
numeric-1iteral-2) is the divisor (denominator).
If GIVING is not written in this case, then the
first operand must be a data-name, in which the
quotient is stored.

The INTO-form signifies that the first operand is
the divisor and the second operand is the dividend.
If GIVING is not written in this case, then the
second operand must be a data'name, in which the
quotient is stored.

Division by zexo always causes a size-error

COBOL-80 Reference Manual
Procedure Division

4.5.8

Page 57

condition.

COMPUTE STATEMENT

The COMPUTE statement evaluates an arithmetic
expression and then stores the result in a
designated numeric or report (numeric edited) item.

The general format of the COMPUTE statement is:
COMPUTE data-name-1 [ROUNDED] . . .-

{data-name-2)
{numeric-literal I tsrze-ERRoR-clausel
I ari t.hmet j-c-expre s s ion J

An example of such a statement is:
COMPUTE GROSS-PAY ROUNDED = BASE-SALARY *

(1 + 1.s* (HOURS 40) / 40).

An arithmetic expression is a proper combination of
numeric literals, data-names, arithmetic operators
and parentheses. In general, the data-names in an
arithmetic expression must designate numeric data.
Consecutive data-names (or literals) must be
separated by an ari-thmetic operator, and there must
be one or more blanks on either side of the
operator. The operators are:

+ for addition
for subtraction* for multiplication

/ for division** for exponentiation to an integral potrer.

When more than one operation is to be executedusing a given variable or term, the order of
precedence is:
1. Unary (involving one variable) plus and minus

2. Exponentiation

3. Multiplication and Division
4. Addition and Subtraction

Parentheses may be used when the normal order ofoperations is not desired. Expressions withinparentheses are evaluated first; parentheses maybe nested to any level. consider the folrowinl

COBOL-8O Reference Manual
Procedure Division

Page 58

expression.

A+B/ (C-D*E)

Evaluation of the above expression is performed in
the following ordered sequence:

1. Compute the product D times E, considered as
intermediate result R1.

Compute intermediate result
difference C R1.

R2 as the

3. Divide B by R2, providing intermeCiate result
R3.

4. The final result is computed by addition of A
to R3.

Without parentheses, the expression

A+B/C-D*E

is evaluated as:

R1 =B/C
R2=A+R1
R3=D*E
final result = R2 R3

When parentheses are employed, the following
punctuation rules should be used:

1. A left parenthesis is preceded by one or more
spaces.

2. A right parenthesis is followed by one or more
spaces.

The expression A - B C is evaluated as (a - B)
C. Unary operators are permittedr €.9.:
COMPUTEA=+C+-4.6
COMPUTE X _ -Y
COMPUTE A' B(I) = -C D(3)

4.6 GO TO STATEMENT

The GO TO statement transfers control from one
portion of a program to another. It has i:he
following general format:

GO TO procedure-name t. .

2.

.DEPENDING ON data-namel

' The simple form Go To procedure-name changes thepath of flow to a designated paragraph or section.rf the Go statement is without a procedure-name,
then that Go statement must be the only one in aparagraph, and must be altered (see 4.,12) - prior toits execution.

The more general form designates N procedure-names
as a choice of N paths to transfer to, if the valueof data-name is 1 to N, respectively. otherwise,there is no transfer of control and executionproceeds in the normal seguence. Data-name must bea numeric erementary item and have no positions tothe right of the decimal poinL.

If a GO (non-DtrpENDING) statement appears in asequence of imperative statements, it must be thelast statement in that sequence.

4.7 STOP STATEMENT

COBOL-80 Reference I'tanual
Procedure Division

4. B

Page 59

or delay

data into the
from operator

format of the

The STOP statement is used to terminate
execution of the object program.

The format of this statement is:

lnun I
ll5Eerall

The ACCEPT statement is used to entercomputer on a Iow volume basis,key-in at the computer console. The
ACCEPT statement is:

STOP

STOP RUN terminates execution of a program,returning control to the operating system. rf usedin a sequence of imperati-ve statements, it must bethe last statement in that sequence.

The form srop literal displays the specifiedliteral on the console anb iuspends execution.Execution of the program is resumed only after.operator intervention. presumably, the operatorperforms a function suggested by the content of theliteral, prior to resuming program execution. For
more information, see the COBOL Userrs Guide.

ACCEPT STATETIENT

ACCEPT data-name

One line is read, and as many characters as

COBOL-80 Reference lvlanual
Procedure Division

Page 60

necessary (depending on the size of the named data
field) are moved, without change, to the indicated
field. If the input is shorter than the receiving
field, the extra positions are filled with spaces
(blanks) .

When input is to be accepted from the console,
execution is suspended. After the operator enters
a response, the program stores the acquired data in
the field designed by data-name, and normal
execution proceeds. A form of the ACCEPT statement
used to acquire the current date, day or time is
explained in Section 4.20.

4.9 DTSPLAY STATEPIENT

The DISPLAY statement provides a simple means of
outputting low-volume data without the complexities
of File Definition; the maximum number of
characters to be output per line is 132. The
format of the DISPLAY statement is:

DISPLAY fdata-name| IUPON mnemonic-name]
lliterat | ...

When the UPON suffix is omitted, it is understood
that output is destined to be printed on the
console. Use of the suffix UPON mnemonic-name
directs that output to the printer. Mnemonic-name
must be assigned to PRINTER in the SPECIAL-NAI'IES
paragraph.

Values output are either litera1s, figurative
constants (one character), or data fields. If a
data itenr operand is packed, it is displayed as a
series of digits followed by a separate trailing
sign.

4.10 PERFORM STATEMENT

The PERFORM statement permits the execution of a
separate body of program steps. Two formats of the
PERFORM statement are available:

Option 1

l-1i"t.e"' I I
PERFORM range Itdata-namef TIMES J

COBOL-8O Reference Manual
l4Procedure Division

Option 2

PERFORI4
findex-nameIrange IVARYING [data-name t

Page 6'l

FROM

amount-1 BY amount-21 UNTIL condition.
(A more extensive version of option 2 is available
for varying 2 or 3 items concurrentlyr ds explained
in Appendix VI.)

In the above syntactical presentation, the
following definitions are assumed:

1. Range is a paragraph-name, a section-namer or
the construct procedure-name-1 THRU
procedure-name-2. (THiouGH is synonymous ffi
THRU.) If only a paragraph-name is specified,
the return is after the paragraph's last
statement. If only a section-name is
specified, the return is after the last
statement of the last paragraph of the section.
rf a range is specified, control is returned
after the appropriate last sentence of a
paragraph or section. These return points are
valid only when a PERFORIT{ has been executed to
set them up; in other cases, control will pass
right through.

2. The generic operands amount-l and amount-2 may
be a numeric literal, index-name, or data-name.
In practice, these amount specifications are
frequently integers r ot data-names that contain
integers, and the specified data-name is used
as a subscript within the range.

In Option 1, the designated range is performed a
fixed number of timesr ds determined by an integer
or by the value of an integer data-item. If no
"TIMES" phrase is given, .the range is perfornred
once. When any PERFORM has finished, execution
proceeds to the next statement following the
PERFORM.

In Option 2, the range is performed a variable
number of times, in a step-wise progression,
varying from an initial value of data-name =
amount-1, with increments of amount-2, until a
specified condition is met, at which time execution
proceeds to the next statement after the PERFORM.

The condition in an Option 2 PERFORM is evaluated
prior to each attempted execution of the range.
Consequently, it is possible to not PERFORM the

COBOL-80 Refercncc Manual
Procedure Dlvlrlon

range, Lf the condition
Similarly, in Option 1, if
is not performed at all.
At run-time, it is illegal
active PERFORI.{ ranges whose
same.

4.11 EXIT STATEIIIENT

4.12

Page 62

is met at the outset.
data-name (0, the range

to have concurrently
terminus points are the

The EXIT statement is used where it is necessary toprovide an endpoint for a procedure.

The fo:mat for the EXfT statement is:
paragraph-name. EXIT.

EXIT must appear in the source program as a
one-word paragraph preceded by a paragraph-name.
An exit paragraph provides an end-point- to whichpreceding statements may transfer control if it is
decided to bypass some part of a section.

ALTER STATEMENT

The ALTER statement is used to modify a simple cO
TO statement elsewhere in the procedure Division,
thus changing the sequence of execution of program
statements.

The ALTER statement general format is:
ALTER paragraph TO [PROCEED TO] procedure-najiie

Paragraph (the first operand) must be a COBOLparagraph that consists of only a simple GO TO
statement; the ALTER statement in effect replaces
the former operand of that GO TO by procedure-name.
Consider the ALTER statement in the context of thefollowing program segment.

GATE. GO TO MF.OPEN.
MF-OPEN. OPEN INPUT MASTER-FILE.

AITER GATE TO PROCEBD TO NORMAL.
NORMAL. READ MASTER-FILE, AT END GO TO

EOP-MASTER.

Examination of the above code reveals the technique
of "shutting a gate, " providing a one-time
initializ).ng program step.

COBOL-80 Reference I'lanual.
Procedure Division

4. 13 rF

Page 53

STATEIqENT

The IF statement permits the programmer to specify
a series of procedural statements to be executed in
the event a stated condition is true. Optionally,
an alternative series of statements may bespecified for execution if the condition is flIse.
The general format of the IF stat,ement r-s:

The "ELSE NExr SENTENCE" phrase may be omitted if
it immediately precedes the terminal period of the
sentence.

Examples of fF statements:

1. IF BALANCE = 0 GO TO NOT-FOUND.

2. IF T LESS THAN 5 NEXT SENTENCE ELSE GO TO
T-1-4.

3. IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD
1 TO SKIP-COUNT ELSE GO TO BYPASS.

The first series of statements is executed only ifthe designated condition is true. The second
series of statements (ELSE part) is executed onlyif the designated condition is farse. The secondseries (ELSE part) is terminated by asentence-ending period unress it is "ELSE NEXT
SENTENCETT ' in which case more statements may bewritten before the peri-od. rf there is no ELSEpart to an rF statement, then the first series ofstatements must be terminated by a sentence-endingperiod. Refer to Appendix rrr ior discussion oinested IF statements.

Regardless of whether the condition is true orfalse, the next sentence is executed after
execution of the appropriate series of statements,
unress a Go ro is contained in the imperatives thatare executedr or unless the nominal frow of program
steps is superseded because of an active PERFORM
statement.

4.13.1 Conditions

rF condition fnnxr SENTENcE | fnlsn
lstatement (s) -1, LELqE

statement (s) -21
NEXT SENTENCE J

A condition is either a simple condition or a
compound condition. The four simple conditions arethe relational, class, condition-name, and sign
condition tests. A simple relational condition his

COBOL-80 Reference Manual
Procedure Division

a

NOT =
NOT <
NOT

the following' structure:

operand-1 relation oPerand-2

where "operand" is
figurative-constant.

a data-name, literal t ot

A compound condition may be formed by connecting
two conditions, of any sort, bY the logical
operator AND or OR, e.9., A (B OR C = D. Refer to
Appendix I for further permissible forms involving
parenthesization, NOTr ot "abbreviation. "

The simplest "simple relations" have three basic
forms, expressed by the relational symbols equal
to, less thanr ot greater than (i.e., = or < or)).

Another form of simple relation that may be used
involves the reserved word NoT, preceding any of
the three relational symbols. In sunrmary, the six
simple relations in conditi-ons are:

Relation Ivleaninq

equal to
less than
greater than
not equal to
greater than or equal to
less than or equal to

Page 64

PROCESSING.

f oIlorvs,

It is worthwhile to briefly discuss how relation
conditions can be compounded. The reserved words
AND or OR permit the specification of a series of
relational tests r ds follows:

1. Individual relations connected by AND specify a
compound condition that is met (true) only if
all the individual relationships are met.

2. Individual relations connected by OR specify a
compound condition that is met (true) if any
one of the individual relationships is met.

The following is an example of a compound relation
condition containing both AND and OR connectors.
Refer to Appendix I for formal specification of
evaluation rufes.

IF X = Y AND FLAG = tzt OR SWITCH = 0 GOTO

In the above example, execution wiII be as
depending on various data values.

COBOL-80 Reference Manual
Procedure Division

Page 65

Data Value Does Execution Go
to PROCESSING?x Y FLAG SWITCH

10
10
10
10

6
6

10
11
11
10

3
6

I zr
I zrrzl
rPr
rPl
rPl

1

1

0
1

0
1

Yes
No
Yes
No
Yes
No

Usages of reserved word phrasings EQUAL TO, LESS
THAN, and GREATER THAN are accepte@ivalentJE
=
be preceded by the word IS, optionally.
Before discussing class-test, sign-test, and
condition-name-test conditions, methods of
performing comparisons will be discussed.

Numeric Cory.arlepne: The data operands are
cmFare"a Er--Tignmenr of thlir decimal
positions. The results are as defined
mathematically, with any negative values being less
than zero, which in turn is less than any positive
va1ue. An index-name or index item (see Chapter 6)
may appear in a comparison. Comparison of any two
numeric operands is permitted regardless of the
formats specified in their respective USAGE
cl-auses, and regardless of length.

Character Comparisons: Non-equa1-lengthffiffiG-ons aiil-pffiIEted, with spj"es beins
assumed to extend the length of the shorter item,
if necessary. Relationships are defined in the
ASCII codei in particular, the letters A-Z are in
an ascending sequence, and digits are less than
letters. Group items are treated simply as
characters when compared. Refer to Appendix IV for
all ASCII character representations. ff one
operand is numeric and the other is not, it must be
an integer and have an implicit or explicit USAGEIS DISPLAY.

Returning to our discussion of simple conditions,
there are three additional forms of a simple
condition, in addition to the relational foim,
namely: class test, condition-name test (88), andsign test.

A class test condition has the following
syntactical format:

COBOL-8O Reference Manual
Procedure Division

4. 14

INUMERTC I

lffi[ffirrc I

Page 66

data

data-name IS [NOT]

This condition specifies an examination of the data
item content to determine whether all characters
are proper digit representations regardless of any
operational sign (when the test is for NUMERIC) r o!
only alphabetic or blank space characters (when the
test is for ALPHABETIC). The NUMERIC test is valid
only for a group, decj-mal, or character item (not
having an alphabetic PICTURE). The ALPHABETIC test
is valid only for a group or character item
(Picture an-form) .

A sign test has the following syntactical format:

ddta-name IS [NoT] NEGATTVE I ZnnO I eOSrrrVn

This test is equivalent to comparing data-name to
zero in order to determine the truth of the stated
condition.

In a condition-name test, a conditional variable is
tested to determine whether its value is equal to
one of the values associated with the
condition-name. A condition-name test is expressed
by the following syntactical format:

condition-name

where condition-name is defined by a level BB
division entry.

OPEN STATEMENT (Sequential r-o)

The OPEN statement must
commencing file processing.
an OPEN statement is:

be executed prior
The general format

to
of

I onu*l-)

For a sequential INPUT file, opening initiates
reading the filers first records into memoryr so
that subsequent READ statements may be executed
without waiting.

For an OUTPUT file, opening makes available a
record area for development of one record, which
will be transmitted to the assigned output device
upon the execution of a WRITE statement. An

COBOL-80 Reference l'lanual
Procedure Division

4.15

Page 67

l existent file which has the same name will be
superceded by the file created with OPEN OUTPUT.

An I-O opening is valid only for a DISK filet it
permits use of the REWRITE statement to modify
records which have been accessed by a READ
statement. The WRITE statement may not be used in
I-O mode for files with sequential organization.
The file must exist on disk at OPEN time; it
cannot be created by OPEN I-O.

When the EXTEND phrase is specified, the OPEN
statement positions the file immediately following
the last logical record of that fi1e. Subsequent
WRITB statements referencing the file will add
recordS to the end of the file. Thus' processing
proceeds as though the file had been opened with
the OUTPUT phrase and positioned at its end.
EXTEND can be used only for sequential files.

Failure to precede (in terms of time sequence) file
reading or writing by the execution of an OPEN
statement is an execution-time error which will
cause abnormal termination of a program run. See
Userrs Guide. Furthermore, a file cannot be opened
if it has been CLOSEd "WITH LOCK. "

Sequential files opened for INPUT or I-O access
must have been written in the appropriate format
described in the User's Guide for such files.

READ STATEMENT (Sequential I-O)

The READ statement makes available the next logical
data record of the designated file from the
assigned device, and updates the value of the FILE
STATUS data item, if one was specified. The
general format of a READ statement is:

READ file-name RECORD IINTO data-name] IAT END
ffip-erative statement . . . l-

Since at some time the end-of-file will be
encountered, the user should include the AT END
clause. The reserved word END is followed by any
number of imperative statements, all of which are
executed only if the end-of-file situation arises.
The last statement in the AT END series must be
followed by a period to indj-cate the end of the
sentence. If end-of-file occurs but there is no AT
END clause on the READ statement, an applicable
Declarative procedure is performed. If neither AT

COBOL-80 Reference Manual
Procedure Division

4.16

Page 68

END nor Declarative exists and no FILE STATUS item
is specified for the fi1e, a run-time I/O error is
processed.

When a data record to be read exists, successful
execution of the READ statement is immediately
followed by execution of the next sentence.

When more than one 01-1evel item is subordinate to
a file definition, these records share the sarre
storage area. Therefore, the user must be able to
distinguish between the types of records that are
possible, in order to determine exactly which type
is currently available. This is accornplished with
a data comparison, using an IF statement to test a
field " which has a unique value for each type of
record.

The INTO option permits the user to specify that a
copy of the data record is to be placed into a
designated data field immediately after the RtrAD
statement. The data-name must not be defined in
the file records description itself.

AIso, the INTO phrase should not be used when the
file has records of various sizes as indicated by
their record descriptions. Any subscripting or
indexing of data-name is evaluated after the data
has been read but before it is moved to data-name.
Afterward, the data is available in both the file
record and data-name.

In the case of a blocked input file (such as disk
files), not every READ statement performs a
physical transmission of data from an external
storage device; instead, READ may simply obtain
the next loqical record from an input buffer.

WRITtr STATEMENT (Sequential I-O)

The general format of a WRITE statement is:

WRITE record-name FROM data-name-1

ii

IAFTER I ADVANCING
IEEFO-RE I

I LrNE(s))operand
PAGE

Ignoring the ADVANCING option for the
proceed to explain the main functions
statement.

In COBOL, file output is achieved by
the WRITE statement. Depending on

momentr we
of the WRITE

execution of
the device

COBOL-80 Reference Manual
Procedure Division

Page 69

assigned, "written" output may take the form of
printed matter or magnetic recording on a floppy
disk storage medium. The user is reminded al_so
that you READ file-name, but you WRITE record-name.
The associated file must be open in the OUTpUT mode
at time of execution of a WRITE statement.

Record-name must be one of the level 01 records
defined for an output file, and may be qualified by
the filename. The execution of the WRITE statement
releases the logical record to the file and updates
its FILE STATUS item, if one is specified.
If the data to be output has been developed in
Workiqg-Storage or in another area (for example, in
an input filers record area), the FROM suffixpermits the user to stipulate that the designateddata (data-name-1) is to be copied into therecord-name area and then output from there.
Record-name and data-name-1 must refer to separatestorage areas.

The ADVANCTNG option is restricted to rine printer
output filesr-and permits the programmer to Lontrolthe line spacing on the paper in the printer.operand is either an unsigned integer riLeral ordata-name; values from 0 to 60 are permitted:

Inteqer Carriaqe Control Action

0 No spacing
1 Normal single spacing2 Double spacing
3 rriple spacing

Single spacing (i . e. , ,,advancing 1 line") isassumed if there is no BEFORE oi arrnR option inthe WRITE statement.

use of the key word AFTER implies that the carriagecontrol action precedes printing a rine, whereisuse of BEFORE implies that writing precedes thecarriage control action: rf PAGE i; specified, thedata is printed BEFoRE or AFTER the device isrepositioned to the next physical page.

When an attempt is made to write beyond theexternally defined boundaries of a sequential fi1e,a Declarative procedure wilI be dxecuted (ifavailable) and the FILE STATUS (if available) willindicate a boundary violation, rf neither is

COBOL-80 Reference Manual
Procedure Division Page 70

available, a runtime error occurs.

4.17 CLOSE STATEMENT (Sequential I-O)

upon compretion of the processing of a file 2 dCLOSE statement must be executed, causj-ng thesystem to make the proper disposj-tion of the fil_e.whenever a file is closedl or has never beenopened' READ, REwRrrE, or wRrrE statements cannotbe executed properlyi a runtime error would occur,aborting the run.

The general format of the CLOSE statement is:
CLPSE {file-name I wrTH LocK]] ...

If the LOCK suffix is used, the file is notre-openable during the current job. rf LocK is notspecified immediately after a file-name, then thatfile may be re-openecl later in the program, if theprogram logic dictates the necessitv.

An attempt t,o execute a closE statement for a filethat is not currently open is a runtime error, and
causes execution to be discontinued.

Examples of CLOSE statements:

cl,osE MASTER-FILE-IN WITH LOCK, WORK-FILE;
CLOSE PRINT-FILE, TAX-RATE-FILE' JOB-PARAMETERS WITH LOCK

4.18 REWRITE STATEMENT (Sequential I-O)

The REWRITE
a sequential

REWRITE record-name IFROM data-name]

Record-name is the name of a logical record in theFile Section of the Data Division and may bequalified. Record-name and data-name must refei to
separate storage areas.

At the time of executj-on of this statement, thefile to which record-name belorigs must be open in
the I-O mode (see OPEll, Section 4.14).
If a FROM part is included in this statement, theeffect is as if MovE data-name To record-name were
executed just prior to the REI^/RITE.

Executi-on of REWRTTE replaces the record that was

statement replaces a logical record
DISK file. The general format, is:

COBOL-80 Reference Manual
Procedure Division

Page 71

^ accessed by the most recent READ statement; saidprior READ must have been completed successfully,
as indicated by the FILE STATUS indicator.
Otherwise, the FILE STATUS indicator gets a value
of r93r. (The FILE STATUS indicator is updated by
execution of REWRITE.)

4.19 GENERAL NOTE ON r/o ERROR HANDLING

If an I/O error occurs, the file's FILE STATUSj.tem, if one exists, is set to the appropriate
two-character code, otherwise it assumes the valueu00rr.

If an I/O error occurs and is of the type that ispertinent to an AT END or INVALID KEy clause, then
the imperative statements in such a clause, ifpresent on the statement that gave rise to the
error, are executed. But, if there is not anappropri-ate clause (such clauses may not appear on
Open or C1ose, for example, and are optional forother f/O statements), then the logic of program
flow is as follows:
1. If there is an associated Declaratives ERRORprocedure (see Section 9), it is performed

automatically; user-written 1ogic mustdetermine what action is taken because of the
existence of the error. Upon return from the
ERROR procedure, normal program flow to thenext sentence (following the I/O statement) is
allowed.

2. If no Declaratives ERROR procedure isapplicable but there is an associated FILE
STATUS item, it is presumed that the user maybase actions upon testing the STATUS itemr so
normal fl,ow to the next sentence is allowed.

Only if none of the above (INVALTD KEY/AT ENDclause, Decraratives ERROR procedure, or testable
FILE STATUS item) exists, then the run-time errorhandler receives controli the location of theerror (source program line number) is noted, andthe run is terminated "abnormalfy. "

These remarks apply to processing of any file,whether organization is Sequential, Indexed orRelative.

ACCEPT DATE/DAY/TIME STATEMENT

The standard date, day
acquired at execution time

or time value may be
by a special form of the

4 .20

COBOL-80 Reference Manual
Procedure Division

ACCEPT statement:

DAY

4 .21

{ffi}

Page 72

and TIME

ACCEPT data-name FROM

The formats of standard values DATE, DAy
are:

DATE a six digit value of the form yyIvIMDD
(year, month, day) .
Example: July 4, 1976 is 760704.

A five digit "Ju1ian date" of the
form YYNNN where yy is the two low
order digits of year and NNN is
the day-in-year number between 1

and 366.

TfME an eight digit value of the
form HHMMSSFF where HH is from 00to 23, MM is from 00 to 59, 0O is
from 0 to 59, and FF is from O0 to99i HH is the hour, MM is the min-
utes. SS is the seconds, and FF
represents hundredths of a second.

The PICTURE of data-name should be 9 (6) , 9 (5) or
9 (8), respectively, for DATE, DAy or TII"IIIacquisition, i.e., dll_ the source values areintegers. If not, the standard rules for a movegovern storage of the source value in the receivinqitem (data-name).

STRTNG STATEMENT

The STRING statement
multiple sending data
receiving item. The
statement is

allows concatenation of
item values into a sincrle

general format of tfris

STRING DELIMITED BY

INTO identifier-1 [WITH POINTER identi fier- 2 l

loN oVERFLOW impe rat i ve- s tatemen t l

{oe"rr'.a-1.
..

operand- 2

SIZE

fn this format, the
non-numeric 1itera1,
constantr or data-name.
receiving data-item

term operand means a
one-character figurative

"Identifier-1 " is the
name, which must be

,^.

COBOL-8O Reference Manual
Procedure Division

Page 73

alphanumeric without editing symbols or the
JUSTIFIED clause. "Identifier-2" is a counter and
must be an elementary numeric integer data item of
sufficient size (plus 1) to point to positions
within identifier-1.
If no POINTER phrase exj-sts, the default value of
the logical pointer is one. The logical pointer
value designates the beginning position of the
receiving field into which data placement begins.
During movement to the receiving field, the
criteria for termination of an individual source
are controlled by the IDELIMITED By,' phrase:

DELIMITED BY SfZE: the entire source field is
moved (unless the receiving field becomes
ful1)

DELIMITED BY operand-2: the character string
specified by operand-2 is a "Key" which, if
found to match a like-numbered succession of
sending characters, terminates the function
for the current sending operand (and causes
automatic switching to the next sending
operand, if any).

If at any point the logical pointer (which is
automatically incremented by one for each character
stored into identifier-1) is less than one orgreater than the sj_ze of identifier-1, no furilrer
d;ita movement occurs, and the imperative statement
given in the OVERFLOW phrase (if any) is executed.
ff there is no OVERFLOW phrase, control is
transferred to the next executable statement.

There is no automatic space fifl into any position
of identifier-1. That is, unaccessed positions are
unchanged upon completion of the STRING statement.

Upon completion of the STRING statement, if there
was a POINTER phrase, the resultant value of
identifier-2 equals its original value plus the
number of characters moved during execution of the
STRING statement.

4.22 UNSTRING STATEMENT

The UNSTRING statement causes data
sending field to be separated into
are placed into multiple receiving
general format of the stat,ement is:

in a single
subfields that
fields. The

COBOL-80 Reference l"lanual
Procedure Division

INTO {identifier-2 [DELTMITER IN identifier-3]
i m-r-n-idenri f ier- a I I

UNSTRING identifier-l

IDELIMITED BY IALL] operand-1 tOR IALLI operand-21 ' ' ' l

Page 74

the

IWITH POINTER identifier-51
tTALLYffi rN -identif ier- 6 l
loN oWplow imperative-statementl

Receiving fields (identifier'2') may be any of
following tYPes of items:

Criteria for separation of subfields may be given
in the "DELIMITED BY" phrase. Each time a

succession of characters matches one of the
non-numeric literaIs, one-character figurative
constants, or data-item values named by operand-i,
the current collection of sending characters is
terminated and moved to the next receiving field
specified by the INTo-c1ause. When the ALL phrase
i; specified, more than one contiguous occurrence
of operand-i in identifier-l is treated as one
occurrence.

When two or more delimiters exist, ?l I ORr

condition exists. Each delimiter is compared to
the sending field in the order specified in the
UNSTRING statement.

Identifier-1 must be a group or character string
(alphanumeric) item. When a data-item is employed
as any operand-i, that operand must also be a group
or character string item.

1. an unedited alPhabetic item

2. a character-string (alphanumeric) item

3. a grouP item

4. an external decimal item (numeric' usage
DISPLAY) whose PICTURE does not contain any P

character,

When any examination encounters trvo contiguous
delimiteis, the current receiving area is either
space or zero filIed depending on :.ts type. If
there is a "DELIMITED BY" phrase in the UNSTRING
statement, then there may be "DELIMITER IN" phrases
following any receivinq item (identifier-2)
mentioned in the INTO clause. In this case, the
character (s) that delimit the data moved into

r

COBOL-8O Reference lrlanual
Procedure Division

Page 75

identifier-2 are themselves stored in identifier-3,
. which should be an alphanumeric item. Furthermore,

if a TTCOUNT IN" phrase is present, the number of
characters that were moved into identifier-2 is
moved to identifier-4, which must be an elementary
numeric integer item.

If there is a 'TPOINTER" phrase, then identifier-S
must be an integer numeric item, and its initial
value becomes the initial logical pointer value
(otherwise, a logical pointer value of one is
assumed). The examination of source characters
begins at the position in identifier-1 specified by
the logical pointeri upon completion of the
UNSTRING statement, the final logical pointer value
will bb copied back into identifier-5.
If at any time the value of the logical pointer is
less than one or exceeds the size of identifier-1,
then overflow is said to occur and control passes
over to the imperative statements given in the "ON
OVERFLOW" clause, if any.

Overflow also occurs when all receJ-ving fields have
been filled prior to exhausting the source field.
During the course of source field scanning (looking
for matching delimiter sequences), a variable
length character string is developed which, when
completed by recognition of a delimiter or by
acquiring as many characters as the size of the
current receiving field can hold, is then moved to
the current receiving field in the standard MOVE
fashion.

If there is a TTTALLYING IN', phrase, identifier-6
must be an integer numeric item. The number of
receiving fierds acted upon, plus the initial val-ue
of identifier-6, will be produced in identifier-6
upon completion of the UNSTRING statement.

Any subscripting or indexing associated with
identifier-1, 5, or 6 is evaluited only once at thebeginning of the UNSTRING statement. Any
subscripting associated with operands-i or
identifier-2, 3, 4 is evaluated immediately before
access to the data-item.

4.23 DYNAMIC DEBUGGTNG STATEMENTS

The execution
dynamically.
in the order

TRACE mode may be set or reset
When set, procedure-names are printed

in which they are executed.

COBOL-80 Reference Manual
Procedure Division

Page 76

Execution of the READY TRACE statements sets the
trace mode to cause printing of every section and
paragraph name each time it is entered. The RESET
TRACE statement inhibits such printing. A prj-nted
list of procedure-names in the order of their
execution is invaluable in detection of a program
malfunction; it aids in detection of the point at
which actual program flow departed from the
exepected program flow.

Another debugging feature may be required in order
to reveal crit,ical data values at specifically
designated points in the procedure. The EXHIBIT
statement provides this facilj-ty.
The statement form

J literar I
EXHIBIT NAMED Idata-namel

produces a printout of values of the indicated
Iiteralr or data items in the format data-name =
value.

Statements EXHIBIT, READY TRACE and RESET TRACE are
extensions to ANS-74 standard COBOL designed to
provide a convenient aid to program debugging.

Programming Note: It is often desirable to include
such statements on source lines that contain D in
column 7, so that they are ignored by the compiler
unless WITH DEBUGGING IIODE is included in the
SOURCE-COMPUTER paragraph,

COBOL-80 Reference llanual Page 77

CHAPTER 5

Inter-Program Communication

separately compired coBol, program modules may be combined
into a single executable program. Inter-program
communication is made possible through the use of the
LTNKAGE section of the Data Division (which follows the
working-storage section) and by the CALL statement and the
usrNc list appendage to the procedure Division header of a
subprogram module. The Linkage section describes data made
avairabre in memory from another program module. Record
description entries in the LTNKAGE section provj-de
data-names by which data-areas reserved in memory bt other
programs may be "referenced. Entries in the LTNKAGE section
do not reserve memory areas because the data is assumed to
be present elsewhere in memory, in a CALLing program.

Any Record Description clause may be used to describe itemsin the LTNKAGE section as long as the vALUE clause is notspecified for other than level BB items.

5.1 USING LIST APPENDAGE TO PROCEDURE HEADER

The Procedure Division header of
subprogram is wrj-tten as

a CALLable

PROCEDURE DIVISION IUSING data-name . .. I .
Each of the data-name operands is an entry in theLinkage secti-on of the subprogram, having 1eve1 77
or 01. Addresses are passed from an external CALLin one-to-one correspondence to the operands in the
usrNc list of the procedure header so that data inthe carling program may be manipulated in the
subprogram. No data-name may appear more than oncein the USING phrase.

5.2 CALL STATEMENT

The CALL statement format is
CALL literal USING data-name

Literal is a subprogram name defined as the
PROGRAM-ID of a separately compiled program, and is
non-numeric. Data names in the USING list are made
available to the ca1led subprogram by passing
addresses to the subprogram; these addresses are
assigned to the Linkage Section items declared in
the USING list of that subprogram. Therefore the

COBOL-80 Reference Manual
Inter-Program Communication

5.3 EXTT PI1OGRAM STATEMENT

The EXIT PROGRAM statement, appearj-ng in a calle<l
subp@amfGEses control - to be ieturned to the
next executable statement after CALL in the callingprogram. This statement must be a paragraph by
itself.

Page 78

number of data-names specified in matching CALL and
Procedure Division USfNG lists must be identical.

NOTE

Correspondence between ca1ler and callee
lists is by position, not by identj-cal
spelling of names.

I

COBOL-80 Reference Manual

CHAPTER

Tab1e Handling by the

In addition to the capabilities of
Chapter 3, COBOL provides the
handling.

subscripting described in
Indexing method of table

Page 79

6

Indexj-ng llethod

6.1 INDEX-NAMES AND INDEX ITEMS

An index-name is declared not by the usual method
of -El-number, name, and data description
clauses, but implicitly by appearance in therrINDEXED BY index-name" appendage to an OCCURS
clause. Thusr drr index-name is equivalent to an
index data-item (USAGE IS INDEX), although defined
differently. An index-name must be uniquely named.

An index data item may only be referred to by a SET
or -ffincn staGfr-ent, a CALL statement I s USrNG list
or a Procedure header USING list i or used in a
relation condition or as the variation item in a
PERFORM VARYING statement. In all cases the
process is equivalent to dealing with a binary word
integer subscript. Index-name must be initialized
to some value before use via SET, SEARCH or
PERFORM.

6.2 SET STATEIVIENT

The SET statement permits the manipulation of
index-names, index items t ox binary subscripts for
table-handling purposes. There are two formats.

Format 1:

Format 2:

(index-name-2)To I index-item-2 I- lii::;::r-' I

{index-name- 1)SET Jindex-item-1 I

laata-name-1 I

(index-name- 4)
I index-item-4 I

) data-name-4 f
Iinteger-4)

SET

Format
(e. g. ,
written

f ,r,u"*-r,.*"- r | | un By I
l;:i::;:::i;' I'' I

mrN-BYI

1 is equivalent to moving the xTOr value
integer-2) to multiple receiving fields
immediately after the verb SET.

COBOL-8O Reference Manual
Table Handling by the Indexing Method

A linear search of
SEARCH statement.

Page 80

Format
.1

a tabl-e may be done using the
The general format is:

Format 2 is equivalent to reduction (DOWN) orincrease. (Up) applied to each of the quantitieswritten immediatery after the verb sET: €rre amountof the reduction or i-ncrease is specified by a nameor value immediately following the word By.

rn any sET statement, data-names are restricted tobinary items, except that a decimal item mayprecede the word TO.

6.3 RELATIVE INDEXING

A user reference to an item in a table controlledby an OCCURS clause is expressed with a propernumber'of subscripts (or indexes) , separatld bycommas. The whole is enclosed in matchinlparentheses, for example:

TAX-RATE (BRACKET, DEPENDENTS)
xcoDE (f , 2)

where subscripts are ordinary integer decimaldata-names, or integer constantir or binary integer
(COMPUTATIONAL or INDEX) itemsr or index-na*"s.subscripts may be qualified, but not, themserves,subscripted. A subscript may be signed, but if so;it must be positive. The lowest icceptabre varueis 1, pointing to the first element oi a table.The highest permissible value is the maximum numberof occurrences of the item as specified in its

OCCURS clause.

A further capability exists, carled rerativeindexing. rn this case, a "subscript" is expressed
as

name * integer constant

where a space must be on either side of the plus orminus, and ,'name" may be any proper inde]<_name.
Example:

xcoDE(r+3,J-1).

SEARCH STATEMENT6.4

COBOL-80 Reference Manual
Table Handling by the Indexing l'Iethod

Page 81

SEARCH table . IVARYING identifier I inaex-name]

IAT END imperative-statement-11

fwHnu Condirion-1 fnnxr SENTENCE I I

l- llinperEffiatement-2 /f
"Tab1e" is the name of a data-item having an OCCURS
clause that includes an INDEXED-BY Iist; "table"must be written without subscripts or indexes
because the naturftF6e SEARCH statement causes
automatic variation of an index-name associated
with a particular tab1e.

There are four possible "varying" cases:

1. NO VARYING phrase the first-Iisted
index-name for the table is varied.

2. VARYING index-name-in-a-different-tabIe the
first-Iisted index-name in the table's
definition is varied, impli_citly, and the
index-name listed in the VARYING phrase is
varied in like manner, simultaneously.

3. VARYING index-name-defined-for table this
specific index-name is the only one varied.

4. VARYING integer-data-item-name both thisdata-item and the first-Iisted index-name fortable are varj-ed, simultaneously.

The term variation has the following
interpretation:

1. The initial value
established by an
SET.

is assumed to have been
earlier statement such as

2, If the initial value exceeds the maximum
declared in the applicable OCCURS cl_ause, the
SEARCH operation terminates at once; ancl if an
AT END phrase exists, the associated imperative
statement-1 is executed.

3. If the value of the index is within the range
of valid indexes (1,2,. .. up to and includingthe maximum number of occurrences), then eacii
WHEN-condition is evaluated until one is trueor aII are found to be false. If one is true,its associated imperative statement is executed
and the SEARCH operation terminates. If noneis true, the index is incremented by one andstep (3) is repeated. Note that incrementation

COBOL-8O Reference Manual Paqe B2
Table Handling by the Indexing Method

SEARCH ALL table IAT END imperative-statement-1...]

of index applies to whatever item and,/or index
is selected according to rules 1-4.

If the table is subordinate to another table, dD
index-name must be associated with each dimension
of the entire table via INDEXED BY phrases in atl
the OCCURS clauses. Only the index-name of the
SEARCH table is varied (along with anotherIVARYING" index-name or data-item). To search an
entire two- or three-dimensional tab1e, a SEARCH
must be executed several times with the other
index-names set appropriately each time, probably
with a PBRFORM, VARYING statement.

The logic of a Format 1 SEARCH is depicted on page
84.

6.5 SEARCH STATEMENT Format 2

Format 2 SEARCH statements deal with tables of
ordered data. The seneral- format of such a SEARCII
ALL statement is:

WHEN condition Jimperative-statement-2...1
lNexr SENTENcE I

OnIy one WHEN clause is permitted, and the
following rules apply to the condition

1. Only simple relational condj-tj-ons or
condition-names may be employed, and the
subject must be properly indexed by the first
index-name associated with table (a1ong with
sufficient other indexes if multiple OCCURS
clauses apply). Furthermore, each subject
data-name (or the data-name associated with
condition-name) in the condition must be
mentioned in the KEY clause of the table. The
KEY clause is an appendage to the OCCURS clause
having the following format:

ASCENDING I OTSCEIIDTNG KEY IS data-name

where data-name is the name defined in this
Data Description entry (following level number) -
or one of the subordinate data-names. If more
than one data-name is given, then all of them
must be the names of entries subordinate to
this group item. The KEY phrase indicates that
the repeated data is arranged in ascending or
descending order according to the data-names

COBOL-80 Reference t'lanual
Table Handling by the Indexing Method

Page 83

phrase) in
. l4ore than

, only the
IS EQUAL TO)

2.

3.

which are listed (in any given KEY
decreasing order of significance
one KEY phrase may be specified.

In a simple relational condj-tion
equality test (using relation = or
is permitted.

4.

Any condition-name
must be defined as

The condition may
Logical connector

variable (Level 88 items)
having only a single value.

be compounded by use
AND, but not OR.

of the

5. In a simple relational condition, the object
. (tO the right of the equal sign) may be a
literal or an identifier; the identifier must
NOT be referenced in the KEY clause of the
ta5te or be indexed bv the first index-name
associated with the table. (The term
identifier means data-name, including any
qualifiers and/or subscripts or indexes.)

Failure to conform to these restrictions may yield
unpredictable results. Unpredictable results also
occur if the table data is not ordered in
conformance to the declared KEy clauses, or if the
keys referenced in the I{HEN-condition are not
sufficient to identify a unj-que table element.

In a Format 2 SEARCH, a nonserial type of search
operation may take placer r€lying upon the declared
ordering of data. The initial setting of the
index-name for table is ignored and its setting is
varied automatically during Ee searching, always
within the bounds of the maximum number of
occurrences. If the condition (WHEN) cannot be
satisfied for any valid index value, control is
passed to imperative-statement-1, if the AT END
clause is present r ot to the next executable
sentence in the case of no AT END clause.

If all the simple conditions in the single
WHENEndition aie satisfied, the resultant index
value indicates an occurrence that allows those
conditions to be satisfied, and control passes to
imperative-statement-2. Otherwise the final
setting is not predictable.

COBOL-80 Reference
Table Handling by

Logic

Manual
the Indexing Method

Diagram for Format 1 SEARCH

Page 84

r-----7
/ *y be null I

indo<
nru<irrn-rn

exesute
inperative
state-
rent (s) -2

Conditlon-2

COBOL-80 Reference Manual

CHAPTER 7

Indexed Files

Page 85

E\

7.1 DEFTNITION OF INDEXED FTLE ORGANIZATION

An indexed-file organization provides for recording
and accessing records of a "data base" by keeping a
directory (called the contro.! index) of pointers
that enlble direct locaT6n -Frecords having
particular unique key values, An indexed file must
be assigned to DISK in its defining SELECT
sentence.

A filb whose organization is indexed can be
accessed either sequentially, dynamically or
randomly.

Sequential access provides access to data records
in ascending order of RECORD KEY values.

In the random access mode, the order of access to
records is controlled by the Progralnmer. Each
record desired is accessed by placing the value of
its key in a key data item prior to an access
statement.

In the dynamic access mode, the progralnmer I s logic
may change from sequential access to random access,
and vice versar €lt will.

7.2 SYNTAX CONSIDERATIONS

In the Environment Division' the SELECT entry must
specify ORGANIZATION IS INDEXED, and the ACCESS
clause- foiffiF-F-

ACCESS MODE IS SEQUENTTAI, I naUOOU I ovllaurc.

Assign, Reserve, and File Status clause formats are
identical to those specified in Section 2.2.1 of
this manual.

In the FD entry for an INDEXED file' both LABEL
RECORDS STANDARD and a VALUE OF FILE-ID clause must
appear. The formats of Section 3.13 apPly' except
that only the DISK-related forms are applicable.

RECORD KEY CLAUSE7 .2.1

The general format of this clause, which is

COBOL-8O Reference lrlanual
Indexed Files

7 .2.2

Page 86

reguired, is:

RECORD KEY IS data-name-1

where data-name-1 is an item defined within therecord descriptions of the associated file
description, and is a group item, an elementary
alphanumeric item or a decimal field. A decimal
key must have no P characters in its PICTURE, and
it may not have a SEPARATE sign. No record key may
be subscrj-pted.

If random access mode is specified, the value of
data-name-1 designates the record to be accessed by
the next DELETE, READ, REWRITE or WRITE statement.
Each record must have a unique record key value.

FILE STATUS REPORTTNG

If a FILE STATUS clause appears in the Environment
Division for an Indexed organization fiIe, the
designated two-character data item is set after
every I-O statement. The following table
sumnrarizes the possible settings.

Status Data
Item LEFT
Character

Statu Item RIGHT r
No Further
Description

(0)

Sequence
Error

(1)

Duplicate
Key
(2)

No Record
Found

(3)

Disk Space
Fu11
(4)

Successful
Completion (0) x

At End (1) x

Invalid
Key (2'l x x x X

Permanent
Error (3) x

Sequence error arises if access mode is sequential
when WRITEs do not occur in ascending seguence for
an Indexed file, or the key is altered prior to
REWRITE or an unsuccessful READ preceded a DELETE
oT REWRITE. The other settings are
self-explanatory. The left character may also bet9t for implementor-defined errors; see the Userrs
Guide for an explanation of these.

Note that "Disk Space Full" occurs with Invalid Key

COBOL-80 Reference Manual
Indexed Files

In addition to thepermissible under all
shown in Section 4.17

above statements,
conditions; the

is used.

Page 87

CLOSE is
same format

(2) for rndexed and Relative file handling, whereasit occurred with "permanent Error', - i:l forsequential files.
rf an error occurs at executi-on time and no AT ENDor rNvAr,rD KEy statements are given and noappropriate Declarati.ve ERROR section is ""ppri"aand no FrLE STATUS is specified, the error wilr beffiplayed on the consore and the progi.* wirlterminate. See Section 4.19.

7.3 PROCEDURE DTVISTON STATEMENTS FOR INDEXED FILEre synrax oEtFb re-mlffiat#""ffitffi= 4.14)also appries to rndexed organized fires, exceptEXTEND'is inappticable
The following table summarizes the avairabrestatement types .and their permissibility in termsof ACCESS mode and opEN opti6n in effect. wn.r. xappears, the statement is permissible, otherwise itis not varid under the ass6ciated ACCESS mode andOPEN option.

Procedure
.Statement

OPEN Option in Effect
Output

SEQUENTIAL

READ
WRITE
REWRITE
START
DELETE
READ
WRITE
REWRITE
START
DELETE

DYNAMIC

READ
WRTTE
REWRITE
START
DELETE

x
x
x
x
x

COBOL-80 Reference Manual
Indexed Files

Page 88

7.4 READ STATEMENT

Format 1 (Sequential Access):

READ file-name [NEXT] RECORD IINTO data-name-l]

IAT END imperative-statement ...]
Format 2 (Random or Dynamic Access):

READ file-name RECORD tflrrO data-name-il IKEY IS data-name-l-

IINVALID KEY imperative-staLement. . .]

Format 1 must be used for all files having
sequential-access mode. Format 1 with the NEXi
option is used for sequential reads of a DYNAMIC
access mode file. The AT END clause is executed
when the logical end-of-file condition arises. If
this clause is not written in the source statement,
an appropriately assigned Declaratives ERROR
section is given control at end-of-file time, if
available.

Format 2 is r:sed for files in random-access mode or
for files in dynamic-access mode when records are
to be retrieved randomly.

In format 2, the INVALID KEY clause specifies
action to be taken if the access key value does not
refer to an existent key in the file. If the
clause is not given, the appropriate Declaratives
ERROR section, if supplied, is given control.

The optional "KEY fS" clause must designate the
record key item declared in the file's SELECT
entry. For non-sequential access, if no "KEY IS"
clause is written in a READ statement, then the
prime record key is assumed to be the key of
record. The user must ensure that a valid key
value is in the designated key field prior to
execution of a random-access READ.

The rules for sequential files regarding the INTO
phrase apply here as well.

WRITE STATEMENT

The
an
is:

WRITE statement releases a
output or input-output file;

Iogical record for
its general format

7.5

COBOL-8O Reference Manual
Indexed Files Page 89

WRITE record-name tESOt',t data-name- 1l

IINVALID KEY imperative-statement. . . l
Just prior to. executing the WRfTE statement, avalid (unique) varue must be in that portion of therecord-name (or data-name-1 if FROM appears in thestatement) which serves as RECORD KEy:

In the event of an improper key value, theimperative statements are executed if the TNVALTD
KEY clause appears in the statement; otherwise anappropriate Declaratives ERROR section is invorea,if appricabre. The rNVArrD KEy condition arisesif:

1. for sequential access, key values are notascending from one WRITE to the next WRITE;

the key value is not unique;

the allocated disk space is exceeded.

7.6 REWRITE STATEMENT

2.

3.

The REWRfTE statement logically replaces anexisting record; the format of tha statement is:
REWRfTE record-name tERqM data_namel

-I.ffivar,ro
xnv imperaEfv;:;t";;Int. . . l

For a file in sequential-access mode, the r-ast READstatement must have been successful in order for aRnwRrrE statement to be varid. rf the varue of therecord key in record-name (or corresponding part-oidata-name, if FROM appears i.n the statement) doesnot equal the key varue of the immediately previ-ousreadr or if that.previous read was unsuccessful.then the invalid key condition
"*i"t= and theimperative statements are executed, if p..".rl;otherwise an applicabre Declaratives ERROR sectionis executed, if available.

For a file in a random or dynamic access mode, therecord to be replaced is specj_fied by the record
!"y; no previous READ is necessary. The INVALIDKEY condition exists when the rlcord key,s value
9gg" not equal that of any record stored in thefile.

COBOL-8O Reference Manual
Indexed Files

7.7

7.8

Page 90

DELETE STATEMENT

The DELETE statement logically removes a record
from the Indexed file. The general format of the
statement is:
DELETE file-name RECORD IINVALID KEY imperative-statement. . . L
For a file in the sequential access mode, the last
input-output statement executed for file-name would
have been a successful READ statement. The record
that was read is deleted. Consequentlyr rro INVALID
KEY phrase should be
sequential-access mode files.

specified for

For a fi,le having random or dynamic access mode,
the record deleted is the one associ-ated with the
record k.y; if there is no such matching record,
the invalid key condition exists, and control
passes to the imperative statements in the INVALID
KEY clause, or to an applicable Declarative ERROR
section if no INVALID KEY clause exists.

START STATEMENT

The START statement enables an Indexed organization
file to be positioned for reading at a specified
key value. This is permitted for files open in
either sequential or dynamic access modes. The
format of this statement is:

START

IINVALID KEY imperative statement...]

Data-name must be the declared record key and the
value to be matched by a record in the file must be
pre-stored in the data-name. trthen executing this
statement, the file must be open in the input or
I-O mode.

If the KEY phrase is not present, equality between
a record in the file and the record key value is
sought. If key relation GREATER or NOT LESS is
specified, the file is positioned for ;rext access
at the first record greater thanr or greater than
or equal to, the indicated key value.

l-file-name I KEY ISL-
(GREATER THAN
I Nor Less rHANI-
I EQUAL 'rO)

u..u-"","|

COBOL-86 Reference lr{anual
Indexed Files

Page 91

If no matching' record is found, the imperative
statements in the INVALID KEY clause are executed,
or an appropriate Declaratives ERROR section is
executed.

COBOL-8O Reference Manual Page 92

CHAPTER 8

Relative Files

8.1 DEFINITION OF RELATIVE FTLE ORGANIZATION

Relative organization is restricted to disk-based
fiIes. Records are differentiated on the basi-s of
a RELATIVE RECORD number which ranses from 1 to
32W orTo-:--tesser maximum for a smaller file.
Unl-ike the case of an Indexed file, where the
identifying key field occupj-es a part of the data
record, relative record numbers are conceptual and
are not"embedded in the data records.

A relative-organized file may be accessed either
sequentially, dynamically or randomly. In
sequential access mode, records are accessed in the
order of ascending record numbers.

In random access mode, the sequence of record
access j-s controlled by the program, by placing a
number in a relative key item. In aynami- access
mode, the program may inter-mix random and
sequential access verb forms at will.

8.2 SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry must
specify ORGANIZATION IS RELATIVE, and the ACCESS
clause format is

ACCESS MObE IS SEQUENTIAL I NAIIOOI'I I OYNAUTC.

Assign, Reserve, and FiIe Status clause formats are
identical to those used for sequentially- or
indexed-organized files. The vaLues of STATUS Key
2 when STATUS Key 1 equals '2' are:

| 1 | for a sequential REWRITE or DELETE
with no previous successful READ

t2t for attempt to WRITE a duplicate key

r3t for nonexistent record

'4t for disk space fuI1

In the associated FD ent-ry, STANDARD labe1s must be
declared and a VALUE OF FILE-ID clause must be
included.

COBOL-80 Reference Manual
Relative Files

8.2.1 RELATTVE KEY CLAUSE

In addition to the
entry, a clause of

RELATIVE KEY IS

8.3

Page 93

Ln the SELECTusual clauses
the form

data-name- 1

is required for random or dynamic access mode. It
is also required for sequential-access mode, if a
START statement exists for such a fi_le.

Data-name-1 must be described as an unsigned binary
integer item not contained within any record
description of the file itself. Its value must bepositive and nonzero.

PROCEDURE DIVISTON STATEMENT FOR RELATIVE FILES

Within the Procedure Division, the verbs OPEN,
CLOSE, READ, WRITE, REWRITE, DELETE and START are
available, just as for files whose organization isindexed. (fherefore the charts in Sections 7.2.2
and 7.3 also apply to RELATIVE files.) The
statement formats for opEN and closE (see sections
4.14 and 4.17) are applicable to Relative fi1es,
except for the "EXTEND" phrase.

8.4 READ STATEIVIENT

Format 1:
READ file-name [NEXT] RECORD IINTO data-name]

[AT END imperative statement...]

Format 2:
READ file-name RECORD IINTO data-namel

lrNvALrD KEY imperative statement. . . l

Format 1 must be used for a1l files in sequentialaccess mode. The NEXT phrase must be present toachieve sequentiar access if the file's declaredmode of access is Dynamic. The AT END clause, ifgiven, is executed when the logical end-of-filecondition existsr or, if not given, the appropriateDeclaratives ERROR section is given conlrol, ifavailable.

Format 2 is used to achieve random access withdeclared mode of access either Random or Dynamic.

COBOL-80 Reference Manual
Relative Files

Page 94

If a Relative Key is defined (in the filefs SELECT
entry), successful execution of a format 1 READ
statement updates the contents of the RELATIVE KEY
item ('daE;=m- 1 ") so as to contain the record
number of the record retrieved.

For a format 2 READ, the record that is retrieved
is the one whose relative record number is
pre-stored in the RELATIVE KEY item. If no such
record exists, however, the INVALID KEY condition
arises, and is handled by (a) the imperative
statements given in the INVALID KEY portion of the
READr or (b) an associated Declaratives section

The rules for sequential files regarding the INTO
phrase apply here as well.

8.5 WRITE STATEMENT

. The format of the WRITE statement is the same for a
. Relative file as for an fndexed file:

WRITE record-name IFROM data-name] [INVALID--ffierative statemdE. . l

If access mode is sequential, then completion of a
WRITE statement causes the relative record number
of the record just output to be placed in the
FSLATM KEY item.

If access mode is random or dynamic, then the user
must pre-set the value of the RELATIVE KEY item in

. order to assign the record an ordinal (relative)
number. The INVALID KEY condition arises if there
already exists a record having the specified
ordinal numberr or if the disk space is exceeded

8.6 REWRITE STATEMENT

The f,ormat of the REWRITE statement is the same for
a Relative file as for an Indexed file:

REWRITE record-name IFROM data-name]

IINVALID KEY imperative statement] -
For a file in sequential access moder the
irnrnediately previouJ action would have been a
successful READ; the record thus previously made . -
available is replaced in the file by executing
RE!{RITE. If the previous READ was unsuccessful2
REWRITE will return a FILE STATUS code of | 21t . -

COBOL-80 Reference Manual
Relative Files

Page 95

HOweveTT Do INVALID KEY
sequential access.

clause is allowed for

For a file with dynamic or random access mode
declared, the record that is replaced by executing
REWRITE is the one whose ordinal number is pre-set
in the RELATIVE KEy item. If no such item exists,
the INVALID KEY condition arises.

8.7 DELETE STATEMENT

The format of the DELETE statement is the same
a Relative file as for an Indexed file:

for

B.B

DELETE file-name RECORD IINVALID KEy
imperative statement. . . l

For a file in a sequenti-al access mode, the
immediately previous action would have been a
successful READ statement; the record thus
previously made avaj_IabIe is logically removed (or
made inaccessible). If the previous READ was
unsuccessful, DELETE will return a value of t21,.
Howeverr Errr TNVALTD KEy phrase may not be specified
for sequentj-al-access mode files.

For a file with dynamic or random access mode
declared, the removal acti-on pertains to whatever
record is designated by the value in the RtrLATTvEKEY item. If no such numbered. record. exists, the
INVALID KEY condition ari-ses.

START STATEMENT

The format of the START statement is the same for aRelative file as for an Indexed file:

START

IINVALID KEY imperative statement. . . l

Executi-on of this statement specifies the beginningposition for reading operations; it is permissibreonly for a file whose access mode is defined assequential or dynamic.

Data-name may only be that of the previously
decl-ared RELATTVE KEy item, and the number of tharelative record must be stored in it before STARTis executed. when executing this statement, the

l- r GREATER THAN)
rrt-e-name I KEY IS { NoT LESS THAN }

l- rL t nQuer, ro l
art.-.r.*"- f]

COBOL-80 Reference Manual
Relative Files

Page 96

associated file must be currently open in INPUT or
f-O mode.

If the KEY phrase is not present, equality between
a record in the file and the record key value is
sought. If key relation GREATER or NOT LESS is
specified, the file is positioned for next access
at the first record greater thanr or greater than
or equal to, the indicated key value.

If no such relative record is found, the imperative
statements in the INVALID KEY clause are executed,
or an appropriate Declaratives ERROR section is
executed.

COBOL-80 Reference l,lanua1 Page 97

CHAPTER 9

DECLARATIVES and the USE SENTENCE

The Declaratives region provides a method of including
procedures that are executed not as part of the sequential
coding written by the programmer, but rather when a
condition that cannot normally be tested by the progranrmer
occurs.

Although the system automatically handles checking and
creation of standard rabers and executes error recovery
routines in the case of input/output errors, additional
procedures may bg specified by the COBOL programmer.

Since these procedures are executed only at the time an
error in reading or wrj-ting occurs, they cannot appear in
the regular sequence of procedural statements. They must be
written at the beginning of the Procedure Division in a
subdivision calred DECLARATTVES. Related procedures are
preceded by a usE sentence that specifies their function. A
declarative section ends with the occurrence of another
section-name with a usE sentence or with the key words END
DECLARATIVES.

The key words DECLARATTVES and END DECLARATTVES must each
begin in Area A and be forrowed by a period. No other text
may appear on the Declaratives at the front of the procedure
Division.

PROCEDURE DIVISTON.

DECLARATIVES.

{ section-name SECTfON. USE sentence.

{paragraph-name. {sentence} . . .}

END DECLARATIVES.

.l

The usE sentence defines the apprJ-cability of the associatedsection of coding.

A usE sentence, when present, must immediately follow asection header in the Declaratirre portion of the Proced.ureDivision and must be forlowed by a period forlowed by aspace. The remainder of the section must consist of zero,
one or more procedural paragraphs that define the procedures
to be used. The usE sentence itself is never executed;rather, it defines the conditions for the execution of the
usE procedure. The general format of the usE sentence is

COBOL-8O Reference Manual
DECLARATI\ruS ANd thc USE SENTENCE

Page 98

USE AFTER STANDARD EXCEPTION I ERROR PROCEDURE

oN ltite-name... I rNPUT I ourPUT lr-O InXrsNol.

The words EXCEPTION and ERROR may be used interchangeably.
The associated declarative section is executed (by Lhe
PERFORI{ mechanism) after the stanc1i rd I-O r(r'jovery
procedures for the files designated, .)r after the IiIVALID
kUV or AT END condition arises on a statement lackinq the
INVALTD KEY or AT END clause. A given file-name may not be
associated with more than one declarative secti-on.

Within a declarative section there must be no reference to
any nondeclarative procedure. Conversely, in the
nondeclarative portion there must be no reference to
procedure-names that appear in the declaratives section,
except that PERFORM statements may refer to a USE statement
and its procedures; but in a range specification (see
pERFORM, Section 4.10) if one procedure-name is in a
Declarative Section, then the other must be in the same
Declarative Section.

An exit from a Declarative Section is inserted by the
compiler following the last statement in the section. A11
logical program paths within the section must lead to the
exit point.

COBOL-80 Reference l"lanual Page 99

APPENDIX I

Advanced Forms of Conditions

Eval-uation Rules for Compound Conditions

Eval-uat j-on of individual simple conditions(relation, c1ass, condition-name, and sign
test) is done first.

1.

2.

3.

1.

2.

OR hnd its adjacent conditions (or previously
eval-uated results) are then evaluated.

EXAMPLES:

A<BORC=DORENOT>F

The evaluation is equivalent to (a<n1 OR (C=D)
OR (E<F) and is true if any of the threeindivid-uaI parenthesized simple conditions istrue.
WEEKLY AND HOURS NOT = 0

The evaluation is equivalent, after expandinglevel 88 condition-name WEEKLY, to
(PAY-CODE = 'W') AND (HOURS + O)

and is true only if both the simple conditionsare true.

[=1ANDB=ZANDG>-3

OR P NOT EQUAL TO ''SPAIN''

is evaluated as

AND-connected simple condj_tions
next as a single result.

[(A = 1) AND (B = 2)

oR (P + " SPATN")

rfp=',sPArN,"the
be true if all three

AND (C > -3) l

are evaluated

compound condition can only
of the following are true:

3.

(c. 1)
(c.2)
(c.3)

A- 1

l=2
c>-3

COBOL-80 Reference Manual Page 100

However, if P is not equal to 'SPAIN", the
compound iondition is true regardless of the
values of A, B and G.

Parenthesized Conditions

Parentheses may be written within a compound
condition or parts thereof in order to take
precedence in the eval-uation order.

Example:

IF A - B AND (A = 5 OR [= 1)
PERFORM PROCEDURE-44.

Tn this"case, PROCEDURE-44 is executed if A = 5 OR
A = 1 while at the same time A = B. In this
manner, compound conditions may be formed
containing other compound conditions, not just
simple conditions, via the use of parentheses.

Abbreviated Conditions

For the sake of brevity, the user may omit the
"subject" when it is contmon to several successive
relational tests. For exanrple, the condition A = 5

OR A = 1 may be written A = 5 OR = 1. This may
also be written A = 5 OR 1, where both subject and
relation being implied are the same.

Another example:

IF A-B OR<CORY

is a shortened form of

IF A-B OR A<CORA<Y

The interpretation applied to.the use of the word
rNOT' in an abbreviated condition is:

1. If the item immediately following 'NOT' is a
relational operator, then the rNOTI

participates as part of the relational
operator;

2. otherwise, the beginning of a new, completely
separate condition must follow rNOTr r not to be
considered part of the abbreviated condition

Caution: Abbreviations in which the subject and
relation are implied are permissible only in
relation tests; the subject of a sign test or

COBOL-8O Reference Manual

class test cannot be omitted.

NOT, the Logical Negation Operator

In addition to its use as a
(e.9. , IF A IS NOT = B)
condition. For example, the
OR C) is true when (A = B OR
word NOT may precede a level
a1so.

Page 101

part of a relation
, rrNOT" may precede a
condition NOT (a = B
A = C) is false. The
88 condition name,

o
tA

.t .p
t{ OO
o 6ta

bl' trt t{Odcooj.c
'.'{ Ul +J -l '- Qr
>'-l O C 'Fl O-{..1 O .C ..{ or'-l r0
oooJr . El{
O >t,) $r O G) Ord 0)O rH Oc.o OE+ro r{E.o d At{ O U'.o Ogoo oo>c ..Jo .qdEc .c,c o o o o +r.c c)En +r.lJE.-t C U o{+r,r.l A j X C-t._l
t{.p.'.O O .'ld

a oE:Ja o (O.rt OOOO d+., OqO,..{rcl+Jt{m> o 'rocl{.r (HO-.JO uld (drdO.rd

d u P{d x o 5 t{
d O 5 fd Ql 'rd (d o'-l tr Oooo a oE ''J+rt{-{ O t{ -O t{ O .lJ O C).-l O O t{ d,q C.q > 0J

c) orH(, ().lJ o(60(). U d+J t{ O't ..i.C E.-lC t{ co(I, +rC +JP{
U' AA4. O OF{]J
'-l O.-l Osq-.1 Orl C d OO
A a U O .rl .-t CC.tdclc 1JH (d

o ocndo{r oo oooU "C d''{'.{ U O O '.{ O-l Ot{ +J}.{o.tJo }{t"{ d>aE, c) c ot1{ a 5 .p o ()
o rH p.o orr_{ o o o o-clra Hoo(/)c) aa z9a.A

Fl
E{oz

U4m

F1
M

+J
tr
o
E
0)
+,
d
+J(t
F1

o
E
g
..{

.|d
c
.U
t{
o
P{o

c.rl
.r{
0)
o
(u
ft

o
a
o
t{
(9

o

Mo

lq

Mo

@

Mo

g
Mo

@

Xo

ca

Mo

U.-l
t{
o
E
5g
d
.c
P{
rl

d

)1o Mo Mo Mo

pa

vo

o
.Fl
r.t
or|'
Eo)
A+)
C '.{.0d
.q 14g
-l

4

Mo }<o Xo |4o

pa

Mo

U
...| O!0)olJ
E'.1AEztA

Mo Mo

o
N<o

o

M

H
o

oUt
.F{ O
t{ +J
OH
E'.1aaZF

oz

}<o Mo

(J

vo

pa

vo

ot{.r{ Ot{ ttloo
E+r5d
ZH

Mo Mo

U

vo

cq

|4o

€ogodt{Haa
Og{(no

t{
o
tn
o
+J
Q
H

o
.Fl
t{
0,
Eaz

t{
o
tn
(u
+,
G.r{
I
c
oz
c)

.Fl
t{
o
Eaz

€
c,
+J
..{
d
frl

o.r{
tr
o
E5z

(J
0,
+J
'-l(t
F]

o.-l
f{
0)
E
a
tr
d
.(
or

Fl
r{

U
.Fl
t{
o
E
=a
d
,c
O{
Ft(

Or
a
otl(,

e{o

o
Ut
(g
o{

ao
c
td
l.l
o
O{o
f'l

HO
HE
XO
HFIo.a
Z 'F{Fl ulAO
A 'Fl

t{
o
A
l+{
o
o

F{
.q
,d
H

Fl
ru
Jq
(t
E
o
oq
o
H
o
${
c,fr
o
@
I

do
rqo
U

COBOL-80 Reference Manual

APPENDIX III

Nesting of fF Statements

A "nested IF" exists when, in a single
more than one IF precedes the first ELSE.

Example:

IFX=YIFA=B
MOVE I1* II TO SWITCH
ELSE MOVE IIAII TO SWITCH
ELSE MOVE SPACE TO SWITCH

The flot^l of the above sentence may be
by a tree structure:

Page 103

sentence,

represented

Another useful
is based on
their priority.

way of viewing nested
numbering IF and ELSE

IF structures
verbs to show

IF1 x-

ELSE 1

false-actionl : MOVE SPACE TO SWITCH.

Space --> Switch

* \ Switch

Next
Sentence

true
actionl :

TE2 [=B
true-action

ELSE2 false-action2 :
: MOVE rr * rr TO SWITCH
MOVE IIAII TO SWITCH

COBOL-8O Reference Manual Page 104

The above illustration shows clearly the fact that
rF2 is wholly rrested within the true-action side of
IF1.

The number of ELSEs in a sentence need not be the
same as the number of IFs; there may be fewer ELSE
branches.

Examples:

rF M_1 Ir K-O
GO TO M1KO ELSE GO TO MNOTI.

rF AMOUNT IS NUMERIC TF AMOUNT
IS ZERO GO TO CLOSE-OUT.

In the 'latter case , IF2 coul_d equally well have
been written as AND.

COBOL-80 Reference Manual Page 1 05

APPENDIX IV

ASCII Character Set
For ANS-74 COBOL

Character Octal Value

101
102
103
104
105
106
107
110
111
112
113
114
11s
116
117
120
'121
122
123
124
125
126
127
130
131
132

Plus-zero (zero with
l"linus-zero (zero with

Character Octal Value

0 60't 61
262
3 63
464
565
666
767
870
9 7'l

(SPACE) 4 0,, 42
$aar(non-ANSI) 47(so
) st*52
+53:;3
.56
/s7
i 73:i:

embedded positive sign); 173
embedded negative sign); 175

A
B
c
D
E
F
G
H
I
J
K
L
M
N
o
P

0
R
s
T
U
v
w
x
Y
z

APPENDIX V

Reserved Words

* words not used bY COBOL-8O
** addit.ional words required by CoBoL-80

I

ACCEPT
ACCESS
ADD
ADVANCING
AFTBR
ATL
ALPHABETIC

*ALSO
ALTER

*ALTERNATE
AND
ARE
AREA (S)
ASCENDING

**ASCII
ASSIGN
AT
AUTHOR

**BEEP
BEFORE
BLANK
BLOCK

*BOTTOM
BY

CATL
*CANCEL
*cD
*cF'
*cH

CHARACTER (S)
*CLOCK-UNITS

CLOSE
*CLOSE
*CODE

CODE-SET
COLLATING

*COLUMN

COMMA
*COMMUNICATION

COMP
COMPUTATIONAL

* *COMPUTATIONAL- 3
**coMP-3

COMPUTE
CONFIGURATION

**CONSOLE
CONTAINS

*CONTROL (S)

COPY
*CORR (ESPONDING)

COUNT
CURRENCY
DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DEBUGGING

*DEBUG-CONTENTS
*DEBUG-ITEM
*DEBUG-LINE
*DEBUG-NAME
*DEBUG-SUB- 1

*DEBUG-SVB.2
*DEBUG-SUB.3

DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING

*DESTINATION
*DE (TAIL)
*DISABLE

**DISK
DISPLAY
DIVIDE
DIVISION
DOWN

*DUPLICATES
DYNAMIC

*EGI
ELSE

*EMI
*ENABLE

END
*END-OF-PAGE
*ENTER

ENVIRONMENT
*EOP

EQUAL
ERROR

*ESI
*EVERY

EXCBPTION

i

I

l

COBOL-8O Reference Manual Page 107

*LrMrr (s)
*LINAGE
*LINAGE-COUNTER
LINE (S)

*LINE-COUNTER
LINKAGE
LOCK
LOW-VALUE (S)

MEMORY
*MERGE
*MESSAGE

MODE
IqODULES
I\,tOVE

*MULTTPLE
IVIULTIPLY

**NAMED
NATIVE
NEGATIVE
NEXT

*NO
NOT

*NUI\,IBER

NUMERIC

OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN

*OPTIONAL
OR
ORGANIZATION
OUTPUT
OVERFLOI^I

PAGE
*PAGE-COUNTER

PERFORM
*PF
*PH
PIC (TURE)

*PLUS
POINTER
POSITION
POSITIVE

**PRINTER
*PRINTING

**EXHIBIT
EXIT
EXTEND

FD
FILE
FILE-CONTROL

**FILE-ID
FTLLER

*FINAL
FIRST

*FOOTING
FOR
FROII

*GENERATE

GIVING
GO
GREATER

*GROUP

*HEADING
HIGH-VALUE (S)

IDENTTFICATION
IF'
IN
INDEX
INDEXED
INITIAL

*INITTATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS
I-O
I-O-CONTROL

JUST (IFIED)

KEY

LABEL
*LAST

LEADING
LEFT

*LENGTH
LESS

COBOL-80 Reference Manual

PROCTDOI! (8)
PROCEED
PROGRAIT
PROGRA}T-ID

**PROMPT

*QUEUE

QUOTE (S)

RANDOM
*RD

READ
**READY

*RECEIVE
RECORD (S)
REDEFINES

*REEL'
*PSFERENCES

RELATIVE
*RELEASE
*REMAINDER
*REMOVAL
*RENAMES

REPLACING
*REPORT (S)
*REPORTING
*RERUN

FESERVE
RESET

*RETURN
*RBVERSED
*REWIND
*REWRITE
*RF
*RH

RIGHT
ROUNDED
RUN

SAME
*sD

SEARCH
SECTION
SECURITY

*SEGIVIENT
*SEGI{ENT-LIMIT

SELECT
*SEND

SENTENCE
SEPARATE

Page 108

SEQUENCE
SEQUENTTAL
SET
SIGN
SIZE

*SORT
*SORT-IVIERGE
*SOURCE

SOURCE-COMPUTER
SPACES (S)
SPECIAL-NAMES
STANDARD
STANDARD- 1

START
STATUS
STOP
STRING

*SUB-QUEUE-1 ,2,3
SUBTRACT

*SUM
*SUPPRESS
*SYMBOLIC

SYNC (HRONIZED)

*TABLE
TALLYING

*TAPE
*TERMINAL
*TERMINATE
*TEXT

THAN
THROUGH
THRU
TIME
TIMES
TO

*TOP
**TRI\CE

TRATLING
*TYPE

*UNTT
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING

COBOL-80 Reference Manual

VAIUE (S)
VARYING
WHEN
WITH
WORDS
WORKING-STORAGE
WRITE

ZERO ((E) S)

+

*
/**

Page 109

COBOL-8O Reference ltanual Page i10

APPENDIX VT

PERFORM with VARYING and AFTER Clauses

PERFORM range

VARYING identifier-1 FROt"t amount-1 By amount-2
UNTIL condition-1

f AFTER identifier-2 FROM amount-3 By amount-4 II UNTIL condition-2 |tltl
| feffrn identifier-3 FRoM amount-5 By amount-61 |

LL UNTIL condition-3 JJ
Identifier here means a data-name or index-name.
Amount-1 r -3, and -5 may be a data-name,
index-name, or literal. Amount-2, -4, and -6 may
be a data-name or literal only.
The operation of this complex PERFORM statement j-s
equivalent to the following COBOL statements
(example varying three items):

START-PERFORM.
IIIOVE amount-1 TO identifier-1
IIIOVE amount-3 TO identifier-2
l,tOVE amount-5 TO identifier-3.

TEST-CONDITION- 1 .
IF condition-1 GO TO END-PERFORM.

TEST-CONDITION-2. -IF condition-2
MOVE amount-3 TO identifier-2
ADD amount-2 TO identifier-1
GO TO TEST-CONDITION-1.

TEST-CONDITION-3.
IF condition-3 A

II{OVE amount-S TO identifier-3
ADD amount-4 TO identifier-2
GO TO TEST-CONDITION-2. -

PERFOR!{ range
ADD amount-5 TO identifier-3
GO TO TEST-CONDITION-3.

END-PEREORM. Next statement.

COBOL-80 Reference lvlanual

NOTE

If any identifier above were an index-name,
the associated MOVE would instead be a SET
(rO form), and the associated ADD would be
a SET (UP form) .

Page 111

COBOL-80 Reference Manual

Index

ACCEPT statement . .
ACCESS clause
ADD statement
ADVANCING option
ALL phrase . .
Alphanumeric item
Alphanumeric-edited item
AITER statement . .
ANSIlevel1...
AIISIlevel 2...
Arithmetic expression
Arithmetic statements . .
ASCII-entry....
AT END clause . .
AUTHOR.........

Binaryitem..o.o.
BLANK WHEN ZERO clause
BLOCK clause

CALLstatement
Character comparisons
Character set . .
Class test condition
CLOSE statement
CODE-SET clause
Comments....
Compound condition . .
COMPUTATIONAL
COMPUTATIONAL-3 . . .
COI4PUTE statement . .
Condition . o

Condition-name...o.
Condition-name test
Conditional statements
Conditions . .
CONFIGURATION SECTION
Continuation line
Control index
COPY statement .
COUNTINphrase....
CURRENCY SIGN . .

Data description entry
Data Division
Dataitem...o.o
DATA RECORDS clause . .
Data-name . .
DATE-COI'IPILED . o

DATE-WRITTEN

Page 1 12

13, 59, 71
23, 85, 92
55
69
74
25, 28, 30
30
62
5
5
57
52
22
46, 6'7, g7-BB,
20

26, 29
40
42

77
65
7
65
70
43
18
64
26, 29
26, 29
57
63
9, 13, 44
66
46, 52
7
22
14, 1B
85
19
75
22

27, 44
12, 16
11, 25
42
9-10, 12, 2'7
20
20

93

Debugging......o
Decimal item . .
Decimal point . .
DECIMAL-POINT IS COMMA
DECLARATIVES
DELETE statement
DELIMITED BY phrase
DISPLAY statement
DMDE statement

Elementary item
EIlipsis
Environment Division
EXHIBIT statement
EXIT PROGRAM statement
EXfT statement . .
EXTEND phrase . .
External decimal item

FD entry . .
Figurative constants
File..o.
File name
File Section . .
FILE STATUS clause
FILE STATUS data item
FILE-CONTROL
File-name....
FILLER....
Floating string . .
FormaL notation

General Formats
GMNG option
GO TO statement . .
Group . .
Groupitem .. .

HIGH-VALUE , O

6, 22, 75
28, 40
32
14, 22
47, 97
90, 95
73
73, 60
56

11,25,29-29
10
13, 16, 21
76
78
62
67
26

12, 19, 41
15
10
12
12, 41
23, 86
67
22
9
27
33
9

9
54
58
29
11, 25; 27, 38, 48

. . 15

r-o.....67
I-O error handling . 71
I-O-CONTROL paragraph 22, 24
Identification Division . 16, 20
IFstatement .. 63
fmperative statements 46, 52
Index data-item . . . 26, 29, 79
Index-name .. .79
fndexedl-O...5
Indexed-fiIe organization B5fNPUTfile.o.66
INPUT-OUTPUT SECTION 22
INSPECTstatemento. 50
TNSTAILATION 20
rnter-Program io*r.rni..tior, 6
Internal decimal item 26
fNTOoption.....68
INVALID KEY clause . 46, g7-91 , 94-96

JUSTIFIED RIGHT clause

KEY clause . .
KEY IS clause

LABEL clause
Level 88 . .
Level number
Libraryo.....
Linkagesection....
Literals . .
LOCK suffix
LOW-VALUE . .

Mnerlonic-name
l{odules . .
MOVE statement
MULTIPLY statement . o

Non-numbric literals
Nucleus.o..
Numeric comparisons
Numeric item
Numericliterals ...
OBJECT-COMPUTER....
OCCURS clause
OMITTED
ON OVERFLOW clause . .
OPEN statement . .
ORGANIZATION clause . .
OUTPUT file . .
OVERFLOW . .

Packed decimal .
Paragraph-name
Paragraphs
Parentheses
PERFORI4 statement
PICTURE.O'O
PICTURE clause .
POINTER phrase .
PRINTER
Procedure Division
Procedure-name
PROGRAIVI-ID . t
Punctuation

Qualification . .
QUOTE....o.

.40

.82

. 88

.41

.44

. 10r 18,

.6

.44

. 13

.70

. 15

. 9, 13

.5

.48

.56

. 13

.5

. 65

. 26, 30

. 14

.22

. 38

.41

.75

.66

.23

.67

.46

.26

.47

.47

. 10

. 50

.26

.30

. 73

. 13, 41 ,

. 16r 46

. 9, 18, 47

.20

. 7-9

. 19

. 15

.61

. 67, 88, 94

. 76

.43

.85

. 10

.37

25, 27 , 44

43

Range(PERFORM)....
READ statement o .
READY TRACE statement .
RECORD CONTAINS clause
FSCORD KEY clause . .
Records.,....
REDEFINESclauSe ...

Relative I-O
Relativeinae*ini:::
RELATM KEY clause . .
RELATIVE KEY item
Relative organization .
REPLACINGclause ...
Reportitem....
RESERVE clause o .
Reserved words
RESET TRACE statement
R.EWRITE statement . .
ROUNDEDoption . o..
SAME AREA
SEARCH ALL statement .
SEARCHstatement ...
Section-name
Sections . . .sEcuRrTX.......
SELECT entry . .
Sentences . . .
Separator . . o . . .,.
Sequence number . .
Sequentiall-O
SET statement . .
SfGN clause
Sign test
Simple conditj-on . .
SIZE ERROR option o o .
SOURCE-COMPUTER... O

SPACE
SPECIAT-NAI\,IES
STANDARD . .
STARTstatement....
Statements..r...
STOPstatement
STRfNG statement . .
Subscripts....
SUBTRACT statement . .
SYNCHRONIZED clause . .

TableHandling
TALLYING clause
TRACEmode
UNSTRING statement
USAGE clause
USE sentence
USING list . .

VALUEISclause....
VALUE OF clause . .
VARYING
Verbs....

WHENclause
Word . .
Working-storage section
WRITEstatement....

5
80
93
94
92
51
25, 28,
23
8-9, 18
76
70, 89,
53

24
82
80
47
47
20
23, 85,
46-47
I
18
5
79
26, 40
66
63
46, 53
22
15
22
41
90, 95
46
59
72
38,' 45
55
39

5
51
75

73
29
97
44, 77

36, 44
42
81
46

82
7-8
44
68, 89,

92-93

31

94

94

